
(Problem 0)--------------------
Design a Turing Machine (TM), T_sub, that does unary decrement by one. Assume a legal, initial tape 
consists of a contiguous set of cells, each containing a "1", surrounded by blank tape to both the left 
and right. Assume the read-write head is initially positioned on the first blank cell to the right of the 
string of 1s. Have T_sub decrement from the left end of the string. Show an initial tape, the position of 
the read-write head, and a diagram showing T_sub's states with state transition arrows labeled with 
"input-symbol / output symbol / move" notation (a "state transition diagram"). Have T_sub halt after 
decrementing, leaving a legal input tape as output, with its read-write head positioned as it was at 
startup (to the right of the rightmost "1"). Assume any legal input is any positive integer. Use unary 
encoding: "1" for 0, "11" for 1, "111" for 2, and so on. You may indicate blank cells as containing the 
symbol "0", or you may use "#" as the symbol for a blank cell.
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(PROBLEM 1)-------------------------------------
Below is shown a part of a TM tape with an encoding of some TM, M. (We show only a part of the encoded 
M.) The encoding symbol set is {1, [, ], {, }, #}. Note that exactly one of these symbols is present in a tape 
cell.

... # # # [ 1 ] { 1 # 1 # 1 1 # 1 1 # 1 1 } { 1 # 1 1 # 1 # 1 # 1 } ...

Here's the interpretation of the above characters:
    # = blank tape cell
    [ = a tape cell containing the symbol "["
    ] = a tape cell containing the symbol "]"
    { = a tape cell containing the symbol "{"
    } = a tape cell containing the symbol "}"
    1 = a tape cell containing the symbol "1"

The part inside braces "{...}" represents a state transition rule of the form,

    { state, input-symbol, output-symbol, move, next-state }

Numbering for M's states and symbols is unary starting from 0. So, M's states are assumed be state-0, 
state-1, and so on, and are encoded as "1", "11", and so forth. Likewise, M's symbols are symbol-0, 
symbol-1, etc., and are encode "1", "11", etc. For moves, assume "1" indicates "move Left", and "11" 
indicates "move Right". The portion of the tape between the brackets "[...]" indicates M's current state, 
which initially is its start-state.

Draw the portion of M's state-transition diagram described on the tape. That is, draw and label whatever 
states are indicated, and draw arrows showing state transitions. Label the arrows "input/output/move" with 
notation such as "2/3/R", which stands for "on input of symbol-2, output symbol-3 and move R". Also, 
interpret what this portion of M does.

Only two state transition rules are shown for M; only two symbols are 
mentioned; only two states are mentioned. Let's say that M's symbol-
0, encoded as "1", is "a", and symbol-1, encoded as "11", is "b". 
M startes in state-0, and this part of M continually moves left, erasing 
any b's it finds until it finds an a. It converts this a to b. It ends up 
with the R/W head pointing to the cell that contained the left-most b. 
That is, "abb...b" ==> "baa...a".



(PROBLEM 2)-------------------
Is there any limit on how large a TM is? That is, is there a largest TM, in the sense that it has the maximum number of 
states, or the maximum number of symbols, or the maximum combined number of states and symbols? Is there any 
limit on the largest TM that can be described using the encoding scheme in Problem-1?

(SOLN)

(In what follows, if X is set, then |X| is the size of X, i.e., the number of elements in X.)

There is no largest Turing Machine. It is true that any particular TM has a finite number of states and and a finite number of symbols. But, 

suppose there were a largest symbol set, S. So long as |S| is finite, we can always introduce a new symbol s, and create a larger symbol set, S' = S 

U {s}. ("U" is for set union.) [OK, that is a little vague, but we can always introduce another encoded symbol to a unary encode version of the set 

S.] Likewise, we can always add another state to get a larger set of states.

The encoding scheme in Problem-1 can handle any TM, M. If M has |S| = n symbols, these symbols will be encoded as S' = {1, 11, 111, .... N} 

where "N" is meant to represent M's n-th symbol, coded as n "1"s. Likewise, any set of m states can also be encoded as {1, 11, 111, ..., M}. There 

are m states, n symbols, and therefore m*n rules, encoded as in Problem-1.

(Problem 3) ----------------------
This question asks for TM designs.  Use state diagrams as shown in class.  Show what your symbol set is. . Draw 
state-transition diagrams, indicating the starting state. Show the initial tape configuration and the starting position of 
your TM's R/W-head relative to the input on its tape.

1. Design a TM, M-left, that moves left four cells from its starting position, and halts.

2. Now extend the design of M-left so that instead of halting, it reads whatever symbol it finds there, moves back to 
its starting position, writes that symbol in the initial cell, and then halts.

3. Design M-right, exactly a mirror image of M-left: it moves right four cells and copies the symbol found there to the 
starting cell.

4. Use the two machines above to build TM "M" that looks at the symbol in its starting cell and acts like M-left if it 
finds a "0" or acts like M-right if it finds a "1". You may use M-left and M-right as hierarchical sub-parts; that is, for 
instance, draw a box, label it "M-left" with a circle inside the box for M-left's start state and another for its halt state, 
the show a state transition from some state of your machine to M-left's start state. If your machine continues 
working after entering M-left's halt state, draw a state transition for M-left's halt state to the next state. The 
assumption is that any of M-left's transitions that enter its halt state actually transition to whatever state you have 
indicated its halt state transitions to.



Note: M-right-4 is identical to 

M-left-4, except all "L"s are 

replaced with "R"s.

3. M-right is identical to M-left, except (1) M-left-4 is exchanged for M-right-4 and vice versa, and (2) R 

and L are exchanged on arcs shown.



(Problem 4) --------------------------------
A finite state machine (FSM) that has "accepting" states and no outputs is called a language recognizer: if, 
when it runs out of input, it is in an accepting state, then the input stream is a string in the language the 
machine recognizes. These languages are called "regular", and there is a grammar for describing such a 
language's syntax called "regular expressions" (see unix "REGEX" man pages). Regular expressions are 
used to specify the strings to search for in almost all programs that do text searching. There is a one-to-
one correspondence between regular languages and accepting FSMs. (The text search is actually 
implemented as a simulation of the corresponding FSM.) For instance, (a+)b*([c|d]e)* is a regular 
expression: "(a+)" says start with one or more "a"s,  "b*" says next comes zero or more "b"s, "[c|d]e" says 
a "c" or "d" then "e" follows; so, "([c|d]e)*" says the string ends in zero or more "ce"s or "de"s. For instance, 
"aabbbdececede" is accepted. Show a state-transition diagram for an FSM accepting the language 
described by that regular expression. Here is the rule table for a machine accepting the language ([c|d]e)*:

state input  next-state
-------  -------   ------
A         c          B
A         d          B
B         e          C
C         c          B
C         d          B

The start state  is A; states A and C are accepting states (it will accept an empty string). All unspecified 
transitions go to an "error", non-accepting state that halts the machine.

This machine must see at least one "a" to get to an 
accepting state. Any number of "a"s may follow. It will 
accept any number of "b"s after that, but will not 
accept another "a" after it has seen a "b". It will 
accept (A1 or A2) in either case, if nothing else 
follows. But it will also accept (C1 or C2) if an 
arbitrary sequence of "ce"s and "de"s follows.



(Problem 5) -------------------------

Simple counting can be done as above by using a fixed number of states, but in general, a TM should be able to handle any size 

of input. (Arbitrary counting can be done by using the tape to keep track of the count). In what follows, we will specify a 

machine's rules in this format:

{current-state, input, output, move, next-state}

For example, here is a machine that moves left forever:

§ States = {A} (ie., it has only a single state, "A".)

§ Symbols = {0, 1, #}

§ Start state = A

§ Rules:

□ {A, 0, 0, L, A}
□ {A, 1, 1, L, A}

□ {A, #, #, L, A}

Explain what the following machine does (Hint: draw its state machine diagram and trace out its execution for some sample 

inputs):

§ Set of states = {A, B, Halt}

§ Set of symbols = {0, 1, #}

§ Start state = A.
§ Transition rules:

□ {A, 0, 0, L, A}

□ {A, 1, 1, L, B}

□ {A, #, #, L, A}

□ {B, 0, 1, R, A}

□ {B, 1, 1, L, Halt}

□ {B, #, #, L, A}

It will skip left over blanks and 0s to find a "01",

convert it to "11", and halt.

If it finds "11" anywhere to the left, it halts immediately. Summarizing: if 

"01" to left, convert to "11", and halt, or if "11" to left, halt; otherwise, loop 

forever moving left. You might say this is a "01"-or-"11" detector.



(PROBLEM 6)------------------

For our purposes, computation is defined by what TMs can do. Take it for granted that computer programs essentially describe 

TMs using a special language (e.g., C). Consider a TM, T_abc, that produces all combinations of symbols using the symbol set, 

{a, b, c}, in order by length. For instance, T_abc would start out producing,

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab,  ...

on its tape. Note that this machine never halts, and that if you wait long enough, it will produce any finite string in a finite 

amount of time. Since the strings get arbitrarily long, any equivalent computer program could not use fixed-size variables to 

construct the strings. The program might use a linked list to remember the last output string, but eventually the string would be 

too long and exceed the size of the memory. We can imagine that then one would have to resort to using disks and so forth. For 

our TMs, the tape is infinite; so, we can ignore that problem. Sketch a method for generating the strings that does not depend on 

fixed resources such as registers or memory. Hint, use copying and additional marker symbols. It is probably easier to think of 
this in TM terms than as a program (in C, for instance). You can suppose you have T_copy available that makes a fixed number 

of copies of a string delimited by specific special symbols, say e.g., double quotes. Assume T_copy produces the copies to the 

right side of current output. Argue that your T_abc, if completely fleshed out, plausibly has a finite number of states and a fixed 

and finite set of symbols.

(Problem 6)---------------SOLN

The idea here is to find a scheme that does not rely on unbounded counting since that would require an infinite

number of states. [NB--However, we can do any counting up to a specific finite maximum n, simply by providing

that many "counting" states in our TM.] We also have the freedom of using any fixed-size symbol set. [NB--Any

fixed size symbol set can be encoded in strings of {0, 1}.] So, the idea is to mark on the tape a region that
should be copied. For instance, initially the tape could be,

L a b c R

The symbols "L" and "R" mark the ends of the copy source. We might also want markers to denote the current

copy string; so, initially we might have,

L "a" b c R

It is easy to imagine a Tcopy machine that when started with the left end of a string, copies that string a

character at a time to another region of tape. For instance, we might mark off that region,

L "a" b c R X "" Y

This input shows the copy-to region marked by X and Y, and the current output string area marked by quotes.
Suppose our TM T starts Tcopy on the string "a", then restarts it on "a" again, and again one more time. Each

time Tcopy finishes a string copy operation, T appends an 'a', then a 'b' and then a 'c'. The tape would look like,

L "a" b c R X aa ab "ac" Y

Just after the end of the third copy operation. T then moves the quotes to the next string in the L-R area, and

makes three copies again,

L a "b" c R X aa ab ac ba bb "bc" Y

When T finds it has reached R, T could then replace X with L, Y with R, move the quotes to "aa", (erasing the

prior L and R), and set up a new copy area:

a b c L "aa" ab ac ba bb bc ca cb cc R X "" Y
In this manner T will continue making three copies of each string in the L-R area, appending a-b-c, and copying

them into the X-Y area. Notice that T can do all these steps by looping and searching combined with counting to

three. With a little thought you can convince yourself that Tcopy is easily realizable (try it).

Of course, this is not the only method for this task.


