
Base 16 (hexidecimal), positional notation for numbers:

 "0x", "x", and "h" indicate hex representation for
 C, LC3as, and verilog, respectively

a base-16 digit (hex). May also represent the value of that digit.

the base-16 digit in the i-th place. May also represent the value of that digit.

Hex Digit Binary Decimal
------------ --------- -----------
 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7

Hex Digit Binary Decimal
------------ --------- -----------
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15

(hex digit) ===> (4-bit binary)
Hex-2-Binary

 Using a Simulator we can

--- See Machine's Content
Registers: R0-R7, IR, PC, MAR, MDR, PSR (in hex notation)
Memory: address/content (in hex, w/ translation to .asm)
Branch conditions: CC (usually as "Z" or "N" or "P")

--- Alter Machine's Content (except CC)
 Registers
 Memory location

--- Execute instructions:
 STEP (1 instruction)
 RUN (w/o stopping)
 STOP (stop running)
 BREAK (stop when PC points to a particular memory location)

--- Set breakpoints:
 Mark memory locations for BREAK

Most things work via double-clicking.
Breakpoint set: click a memory line or square icon.

 projects/LC3-tools/PennSim.jar

--- Double-click items to change them. Hardware is
slightly different from our LC3 and from PP's LC3.
Don't use scroll bars, use up/down arrows on your keyboard.

 src/LC3-tools/LC3sim: commandline simulator
---See src/Makefile for compiling.

NB--The Makefile compiles the tools, then moves the executables to /bin.
I found that LC3sim and LC3sim-tk need to be moved back to src/LC3-tools
for them to work. LC3-tools also has other executables (assembler and
others) that we will need to use when we get to assembly language
programming.

An OS is software that is pre-loaded into memory.
Preloading is booting in an actual machine.
The OS provides services for programs.

Some LC3 simulators (not ours) preloads a very primitive "OS". It is
called "LC3os", and here it is (almost all of it):

--Halt: stop machine w/ message.

--Getc: one char, keyboard ==> R0[7:0] (clears R0 first).

--Out: one char, R0[7:0] ==> display.

--Puts: Mem[R0] ==> display (until x0000 found).

--In: prompts, then one char input ala Getc.

--Putsp: Puts, but for packed data (2 chars per word).

We can load the same OS using our testbenches. The source code is in src/. The
instructions to build and load it are in the Makefile.

01100001

01000001

01100010

01100011

ASCII codes
 ...

x41 A
x42 B
x43 C
 ...

x5A Z
 ...

ASCII codes
 ...

x30 0
x31 1
 ...

x38 8
x39 9
 ...

Program executes
--- decides what you need to see
--- sends codes to video controller

Video controller
--- sends to display device

Display processor
--- turns pixels on or off

bit
is 1.Suppose we want to see content of memory.

--- LD R1, <address>
--- detect bit
--- send ASCII
--- detect next bit
--- send ASCII
 . . .

Programmer:

"Decisions, decisions!"
"What order should the bits appear?"
"Which is low-order bit?"

First Thing -- First Printed.

Last Thing -- Last printed

bit
is 0.

Lowest bit to Highest bit,
BUT doesn't look like a number.

Highest bit to Lowest bit,
BUT printed in backwards order.

Print 4-bit numbers in order, first-to-last (lowest-address to highest-address)

1011 0100 1110 0001

1101 0010 0111 1000

BUT each 4-bit number is backwards

numbers OK, BUT bits are jumbled

Print 8-bit numbers in order, first-to-last (lowest-address to highest-address)

 10110100 11100001 ALL bits are in order,
lowest-to-highest, left-to-right,
BUT each 8-bit number is backwards

 00101101 10000111
numbers OK, BUT bits are a TOTAL jumble,
even 4-bit units are swapped within each
number.

Basic problem: NUMBERS are Arabic (right-to-left), and our writing is left-to-right. In olden times,
numbers were expressed in writing, e.g., "four and twenty blackbirds", left-to-right, in writing order.
If we wrote numbers left-to-right, least-significant-to-most-significant, case (1.) would be perfect.
If we wrote everything right-to-left, case (1.) would have all bits reversed, and be perfect, too.

More on the difference between ascii representation of bits and actual bits. At a unix terminal window,
enter

 echo "abcd" | od -t x1

You will see the ascii codes for each byte that echo sent to od (plus an extra byte for an assumed end-
of-line), expressed in hex:

 61 62 63 64 0a

We would naturally think of this as the bytes of memory left-to-right. Now enter this,

 echo "1234" | od -t x1

You will again see ascii codes. The "real" bits for the first character, "1", are equivalent to x31, or
00110001 in actual bits. Next change the "x1" to "x2", and to "x4". You will see this,

 31 32 33 34

 3231 3433

 34333231

If you think of the first byte in memory as containing the least-significant bits of a number, it would
depend on the number of bytes the number had as to which byte you display first. If the number has 16
bits, then the first 16 bits would be expressed 3231 in hex, but if it was a 32-bit number, you would
display 34333231 in hex.

But, if we read things in right-to-left order, thinking of memory as laid out right-to-left, and printing bytes
right-to-left, we would have,

 "4321"

 "4" "3" "2" "1"

 34 33 32 31

 3433 3231

 34333231

In all cases, the least-significant bit is the rightmost, the least significant byte is the rightmost, and so
forth. To accommodate the switching back and forth (and some other less important reasons), some
machines put the most-significant byte of a number in the lowest byte address (called "big endian", as
opposed to "little endian").

LSb

MSb

LSb : least-significant bit
MSb : most-significant bit
LSB : least-significant byte
MSB : most-significant byte

LSB

MSB

16-bit word (2B) at address x0000

2B-addressable memory:
 x0001 is 2B from x0000

1B-addressable memory:
 17-bit address 00000000000000000 ==> LSB
 17-bit address 00000000000000001 ==> MSB

Big-endian:
Reverse bytes as 64-b value:

LSB0 MSB0 LSB1 MSB1 LSB2 MSB2 ...

Small-end of memory: address x0000
Big-end of memory : address xFFFF

Little-endian:
 least-significant toward small end
 most-significant toward big end

