
RegFile[DR] <== Mem[Mem[PC + PCoffset9]]

PC - indirect

Really, a combination

 PC-relative
 + memory-indirect

 memory cell at address

 [j+1+k]

 is/contains

 A Pointer Variable

PC-relative

MAR <=== PC + IR[8 : 0]

aka, register-indirect
aka, register-relative

MAR <=== RegFile[IR[8 : 6]] + IR[5 : 0]

immediate

RegFile[IR[11 : 9]] <=== PC + IR[8 : 0]

Register
ADD, AND

 DR <=== SR1 op SR2

NOT

 DR <=== NOT(SR1)

Address are formed from,

 --- register content (PC or RegFile)
 --- IR bits (a portion of instruction)
 --- content of memory

Addresses are used,

 --- access memory (load MAR)
 --- change location of instruction fetch (load PC)
 --- saved for later use (load RegFile or memory)

WE NEED a COMPLETE language for describing machines (TMs).

WE HAVE functions: NAND (AND, NOT) is universal (+ bonus, ADD)
WE HAVE tape: LD, ST (and variants)

DON'T HAVE branching for simulated machine (described machine).

Machine Description

 description of
 next-state function:
 cond <=== F()

 IF (cond) THEN
 A
 ELSE
 B
 end-IF

Branching: load PC based on condition evaluation

 --- LC3's decode state: 16-way branch

 --- minimum branching: 2-way (if-then)

 --- k-way branches can be built from 2-ways

 --- same addressing for branches

 --- condition is function of symbols read (think, Turing Machines)

 --- compare symbols (is-equal == difference-is-zero)

 --- LC3 stores cond in PSR Condition Codes (CC) (on all register writes)

 --- is-zero Z, is-positive P, is-negative N (CC = {N, Z, P})

(JMP + ?) == Function Calls

 --- abstraction == interface + hiding details

 --- low-level abstraction == sub-cell (Electric) == function (e.g., C)

 --- code == hardware

 --- jump into function (signal in to sub-cell's export)

 --- jump back from function (signal out from sub-cell == return value)

REMEMBER RESULT of FUNCTION EVALUTION

 LD_CC

 on ANY register load (AND, ADD, NOT, LD, ...)

 N = BUS[15] <was it negative?>
 Z = NOR(BUS[15..0]) <was it zero?>
 P = NOT(N)*NOT(Z) <was it positive?>

SAVE BRANCH CONDITION (State-32):

 BEN <== (CC & IR[11:9]) && (IR[15:12] == 0000)

 BEN == 0 : Don't Branch
 BEN == 1 : Do Branch

 affects LD_PC in State-22 (Branch taken)

What about remembering BEN?

What does this instruction do?
 0000 000 1 1111 1111
And this one?
 0000 111 1 1111 1111

Range of BR?
The range of BR is limited (9 bit offset). We need to
be able to jump anywhere. We could reach anywhere
w/ chained BRs. But we'd like another instruction that
jumps anywhere.

0000 1 0 1 0 00001 010

 & & &

 BEN <=== 1
 if
 N AND n (BRn)
 or
 Z AND z (BRz)
 or
 P AND p (BRp)

 0000 1 0 1 0 00001 010

 15 3 2 1 0

state-32: BEN stored
state-0:
 BEN == 1?
 yes: go to state-22
 no : go to state-18
state-22:
 LD_PC <== 1

What kind of branch decisions can we make?

 BR 0 0 0 PCoffset9

 & or & or &

 BR 1 1 1 0 0000 0000

 BR 1 0 0 PCoffset9

 BR 1 1 0 PCoffset9

BRn (BRp)

 BRnz (BRzp)

BRnzp (aka, BR) BR 1 1 1 PCoffset9

 BR 0 1 0 PCoffset9 BRz

;--------------------------
;--- A in R1, B in R2
;--------------------------
NOT R3, R2 ;--- R3 <== -B
ADD R3, R3, #1

ADD R3, R1, R3 ;--- R3 <== A-B

BRz (+1) ;--- if (A == B)
BRnzp (+100)
 ;--- then

 BR 0 0 0 0 0000 0000

 LC3 Branch Logic

Condition Codes are PSR[2:0] == { N, Z, P }

state-32: LD_BEN[32] = 1'b1;

For any state k that writes a
register: LD_CC[k] <== 1'b1

PSR[2 : 0] ==
 { CC_N, CC_Z, CC_P }

IR[11 : 9] ==
 { IR_N, IR_Z, IR_P }

If (CC_N == IR_N OR
 CC_Z == IR_Z OR
 CC_P == IR_P)
 and
 (current instruction is BR)

then

 Let controller know to jump
 BEN <== 1

PC incremented in fetch-
instruction phase.

Offset IR[8 : 0] comes
into addrArith and
through SEXT9x16.

Branch target address
evaluated in addrArith.

offsetAddr loaded to PC.

BR_Logic

addrArith

offsetAddr is

 (incremented PC)
 +
(sign-extended PCoffset-9 from IR)

But, we still need JMP

9-bit PCoffset9 ===> + or - (1/2) 2^9
 about 2^8 range (256)

Not very far, out of 2^16 (64k) memory locations.

How can we jump farther?

PC <= REGfile[SR1]

Use any 16-bit address,
jump anywhere.

 1100 - - - 1 1 1 - - - - - -

 ABSTRACTION == FUNCTIONS:
 Write code ONCE -- use ANYWHERE

What we have so far: AND, NOT, ADD, LD, ST, LEA, BR, JMP

Can we jump:
-- TO function code FROM anywhere?
-- BACK to where we came from?

IDEA: use
-- MEMORY POINTER to jump TO
-- REGISTER to jump BACK

Funtion call and return:

LD R1, -51 //------- (get TO addr)
 // R1 <== Mem[100] ==300

LEA R7, 1 //------- (save BACK addr)
 // R7 <== PC+1 == 152+1

JMP R1 //------ (jump TO function)
 // PC <== R1 == 300

JMP R7 //------ (jump BACK)
 // PC <== R7 == 153

address

If we set up R2 at the beginning, we can use our
jump table from any location in memory, and jump as
far as needed.

 ABSTRACTION == FUNCTIONS:
 Write code ONCE -- use ANYWHERE

What we have so far: AND, NOT, ADD, LD, ST, LEA, BR, JMP

Can we jump:
-- TO function code FROM anywhere?
-- BACK to where we came from?

IDEA: use
-- MEMORY POINTER to jump TO
-- REGISTER to jump BACK

Funtion call and return:

LD R1, -51 //------- (get TO addr)
 // R1 <== Mem[100] ==300

LEA R7, 1 //------- (save BACK addr)
 // R7 <== PC+1 == 152+1

JMP R1 //------ (jump TO function)
 // PC <== R1 == 300

JMP R7 //------ (jump BACK)
 // PC <== R7 == 153

JMP R7 PC <== R7
(aka, RET)

R7 <== PC per (2) above
PC <== RegFile[SR1] per (3) above

R7 <== PC
PC <== PC + PCoffset11

Function calls are common.
Let's make it easier for the programmer.

 0100 0 - - 0 0 1 - - - - - -

 0100 1 000 1000 0010

address

TRAP (indirect function call: use a pointer to jump)

State-15:

 MAR <== ZEXT(IR[7 : 0]) //--- get f()'s VT entry's address

State-28:

 R7 <== PC //--- save "return" address
 MDR <== MEM //--- get f()'s address from VT

State-30:

 PC <== MDR //--- jump to f()

 1111 0000 0000 0010

 0000 0000 000 0010

trap-02:
 ADD
 LD
 ...
 ...
 JMP R7

R7 <== PC //---- save RETURN addr

MAR <== trapvect8 //---- dereference vector, i.e., get
MDR <== Mem //---- Trap-02's address from VT

PC <== MDR //---- JMP to Trap-02 body
...
... //---- do Trap-02 work
...
PC <== R7 //---- JMP back to RETURN address

--- TRAP is a FUNTION CALL, typically to an OS function
 Programs never need to know details ==> much simpler.
 Hmmm, but how do functions get arguments, return results?
 Possibilities: registers, memory, stack (more later).

--- PROGRAM INDEPENDENCE
 Programs don't have to know actual code location
 jump via STANDARD VECTORS, OS convention known/published
 OS can move function anywhere, then re-initialize VT.

--- Trap Vector Table (VT), 8-bit index ==> 256 entries [x0000 -- x00FF]
 Or, One-address, multiple-functions? Number in register chooses which function.
 Linux uses VT vector 80 for all entries to OS: 32-bit register ==> 4G functions possible.

--- TRAP routines doing Input/Out: OS provides services to programs
 OS talks to I/O devices via device registers:

1. LD/STR and memory addresses ("memory mapped I/O" as in LC3)
2. IN/OUT and separate address space (x86 architecture)

 OS contains all "driver" code, access via TRAP

--- Other mechanisms similar to TRAPS:
1. Interrupts: I/O devices make service requests, jump to OS routine.
2. Exceptions: errors such as divide-by-zero, illegal opcode, etc., cause jump to OS.

