
PUZZLE

Write a program in LC3 machine code which alters its first two instructions using
data A and B:

 (1) instr_0.opcode <== instr_0.opcode + A (only opcode is altered)
 (2) instr_1.opcode <== instr_1.opcode + B (likewise)

regardless of where the program might be located in memory when executing.
Assume PC initially contains address of memory word above A. Data A and B are in
consecutive memory words as part of program. Don't worry about what happens
after the end of the program is reached.

Below, we will show LC3 states with, (1) Register Transfer Language (RTL) indicating the operation,
and (2) the required NON-ZERO control signals. For example,

 MAR <== PC
LD_MAR

indicates that PC content transfers into MAR, and LD_MAR control signal must be 1 (all other control
signals are assumed to be 0.) Necessary signal paths are shown like this, for example,

 IR[15:12]--->FSM.in

indicates that the 4 high-order bits of the IR need to be routed to the control FSM's input.

The test bench, "top_rtl_testInstr", in the test.jelib Electric library displays the current simulation tick,
the FSM's state, all non-zero control signals, and all non-zero MUX controls, eg.,

 -------------------------------------(3)--------------------------
 -------(((18)))-------[LD_MAR]---------[]-----------------

Here, the current tick is 3, the state is 18, the LD_MAR == 1, and all MUX selects are zeroes. Next
we would also see values for the PC, MAR, MDR, IR, PSR, and all eight registers in the RegFile.

fetch instruction:

State 18:
 MAR <== PC

GatePC
LD_MAR

 PC <== PC + 1
PCMUX = 00 (select)
LD_PC

State 33:
 MDR <== MEM.out
 LD_MDR
 MIO_EN
 R_W = 0

State 35:
 IR <== MDR

LD_IR

Branch on int:
 [int]
Branch on R:
 "R=0"

in Electric

1. See top.Mem-IO-Bus

 --- address decode
 --- tri-states
 --- control bus

2. See test.testInstr

 --- initializing memory

 Opcode DR SR1 ... SR2

 15...12 11...9 8...6 5...3 2...0

 0001 110 010 000 011

 ADD R6 R2 R3

 Opcode DR/SR1 PCoffset9

 15...12 11...9 8......0

 0010 111 0 0001 0110

 LD R7 x16

 Opcode DR/SR1 BaseR offset6

 15...12 11...9 8...6 5...0

 0110 111 011 01 1000

 LDR R7 R3 #12

Operate Instructions (ADD, AND, NOT)

State-9 (NOT):

 IR[15..12] ---> FSM.in

 IR[11..9] ---> DRMUX ---> RegFile.DR
 IR[8..6] ---> DRMUX ---> RegFile.SR1
 ALU.out ---> RegFile.in

 DR <== NOT(SR1)
 GateALU SR1MUX.select == ?
 LD_REG DRMUX.select == ?
 LD_CC ALUK = 10 (NOT)

Before:

Regfile[101] = 1100101011110000

After:

Regfile[011] = 0011010100001111

Regfile[101] = 1100101011110000

 1001 011 101 ...

 15...12 11...9 8...6 5......0

MUX'ed RegFile INPUTS (see, App. C, p. 574)

Control Signals: DRMUX[1 : 0]
 SR1MUX[1 : 0]

ADD (3-register addressing)

State-1:

IR[15..12] ---> FSM.in

IR[11..9] ---> DRMUX ---> RegFile.DR

IR[8..6] ---> SR2MUX ---> RegFile.SR1

IR[2..0] ---> RegFile.SR2

IR[5] ---> SR2MUX

 DR <=== RegFile[SR1] + RegFile[SR2]
GateALU
LD_REG

 LD_CC
 ALUK = 00

 0001 011 100 0... 101

 15...12 11...9 8...6 5 2...0

ADD can function two ways:

1. ADD: Get both operands from RegFile, SR1 and SR2
 ---- register-register-register addressing

2. ADDi: Get one operand from RegFile (SR1) and the other from IR[4 : 0]
 ---- IR[4 : 0] (aka, immed5 in this context) is sign-extended from a 5-bit number
 to a 16-bit number.
 ---- Sign-extending copies the low 5 bits, and then makes the upper 11 bits
 all 0 or all 1, depending on whether immed5 is positive or negative
 ---- register-register-immediate addressing

Sign-extending the IR immediate data bits:
 IR[4 : 0] ---> SEXT.in ---> ALU.B

A - B ? ===> Do A + (-B)
 2s-complement with immediate constants.

 Suppose: A in R0, B in R1

 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

 0 0 0 1 0 1 1 0 0 0 0 0 1 0

 0001 011 100 1 00101

 15...12 11...9 8...6 5 4....0

 0000 0000 0000 0101

Load/Store (LD / ST ; pc-relative addressing)
load a register from memory / store register in memory
 DOES Address ARITHMETIC

LD
State-2:

IR[8..0] ---> SEXT-9x16 ---> ADDR2MUX

 PC ---> ADDR1MUX

(ADDR2MUX + ADDR1MUX) ---> MARMUX

 MAR <=== PC + IR[8..0]
GateMARMUX ADDR1MUX == 1'b0
LD_MAR ADDR2MUX == 2'b10

State-25:

 MDR <=== MEM.out
 LD_MDR

 MIO_EN
 R_W == 0
State-27:

 DR <=== MDR
GateMDR LD_REG

 LD_CC DRMUX == ?

 PC <== PC+1 0010 0000 0001 1010 (x201A)
 + SEXT(IR[8 : 0]) + 0000 0000 1010 1111 (x00AF)
 MAR <== = 0010 0000 1100 1001 (x20C9)

 R2 <== MDR <== MEM[x20C9] (x0005)

 0010 011 0 1010 1111

 15...12 11...9 8......0

LDI / STI
 (memory indirect addressing)
 Pointers Variables
LDI:
State-10:
 MAR <=== PC + IR[8..0]
State-24:
 MDR <=== MEM[PC + PCoffset9]
State-26:
 MAR <=== MDR
State-25:
 MDR <=== MEM[MAR]
State-27:
 DR <=== MDR

 1010 011 1 1100 1100

 15...12 11...9 8......0

State-26:
 MAR <=== MDR
State-25:
 MDR <=== MEM[MAR]
State-27:
 DR <=== MDR

MAR <== PC + PCoffset9

What we've got so far:

NOT R1, R1

ADD R1, R2, R3
ADDi R1, R2, x10

AND R1, R2, R3
ANDi R1, R2, #13

LD R1, R2, x-34
ST R1, R2, x-34

LDI R1, R2, x-34
STI R1, R2, x-34

LDR / STR (register-indirect addressing)
 Pointer in a register
LDR

State-6:
IR[11..9] ---> RegFile.DR
IR[8..6] ---> RegFile.SR1
RegFile.SR1out ---> ADDR1MUX
IR[5..0] ---> ADDR2MUX

 MAR <== BaseR + offset6

State-25:
 MDR <== MEM[MDR]

State-27:
 DR <== MDR

 Memory
 address content

...
 x0012: ABCD

...

 x0200: 1010 011 110 001101
...

 0110 011 110 001101

 15...12 11...9 8...6 5......0

Overall Effect

 DR <=== MEM[BaseR + Offset6]

LEA
 (immediate addressing)

State-14:
PC ---> ADDR1MUX
IR[8..0] ---> ADDR2MUX
MARMUX ---> RegFile.in

 DR <= PC + PCoffset9

x01FE:
x01FF:
x0200: 1110 101 111111101 (PC <== x0201)
x0201:

 1110 011 1 1111 1101

 15...12 11...9 8......0

 R5 <=== PC + SEXT(1FD)

 1111 1111 1111 1101
 0000 0010 0000 0001

 0201 + FFFD = 0201 - 3 = 01FE

