
Lec-4-vonNeumann

What we are looking for

-- A general design/organization

-- Some concept of generality and completeness

-- A completely abstract view of machines
    a definition
    a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene, 
listen to 

Dave Patterson:

        Computer Architecture is Back: 
        Parallel Computing Landscape

http://www.youtube.com/watch?v=On-k-E5HpcQ



We need a language rich enough to describe 

 ---- any function, next-state or data operation
 ---- read/write
 ---- how to change to next state of M

then we can describe ANY machine, and simulate it.

( input = s1 / output = s5 / move = L )

 Description
  of machine
       M
   in some
  "language"

We need:
1) To keep track of M's state
2) read/write data symbols
3) data operations
4) next-state function F(state, input)

nand( a, b )   ===>  f
nand( c, d )   ===>  e

Program describes completely, how
--- Machine M changes state
--- next state depends on current state and current input
--- output depends on input and M's current state
--- M "moves" to another location to read next symbol

 State  input   output move   Next



Need some way for the machine to 
"know" what the outcome was of 
calculating the next state.

NB--It's not obvious what capabilities we need. 
Can we find a model that could tell us that?

Memory can be thought of as 
an array, the address is the 
array index:

    Memory[ address ] <== in
    out <== Memory[ address ]

Recreate the branched 
graph in linear memory. 
Execution follows a path 
through graph.

ADD           SUB       
MULTIPY   DIVIDE 
              ...     

Load Reg, Address
Store Reg, Address

Push Reg
Pop Reg

Necessary for TM completeness:
--- Changing M's state
--- Go to other part of description
---    depending on input/data

Jmpz Addr1 

 Jmp 



Two devices cannot both set the 
signal value on a wire at the same 
time. E.g., A says it's "0" and B says 
it's "1". 

BUS is shared between devices. The controller 
"enables" exactly one of the tri-states at a time; e.g.,

Busses (because you see them here and there)

Turing View of a Computer

--- a machine can be described as a table of rules
    ( current-state, input ===> output, next-state)

--- input, a symbol, is read from "memory"
--- a rule is applied according to
        --- what the current state is
        --- which symbol was read
--- output, a symbol, goes to "memory"
--- the machine changes state
--- repeat

von Neumann View of a Computer

--- a "program" is a sequence of 
       step-by-step instructions

--- instructions are read from "memory"
--- the instruction is read into a "register"
--- a  controller "executes" the instruction
    --- data is read from "memory"
    --- a "register" remembers what was read
    --- an operation changes the data
    --- a register stores the result
    --- the result is written to "memory"
--- repeat

                                            How they correspond:

    Turing                                                             von Neumann

        a State                                                              A section of the program
        a change of state                                              jumping to a different section
        a rule's output part                                            a section that produces a new output
        a rule's state-change part                                 a section that calculates the next jump

We usually think of a signal as going from one place 
to another along a wire. E.g., device A sends a "0" to 
device B.
Device C cannot use the same wire to send to B, 
even at a different time. But, maybe we can?

A is connected to BUS
B is disconnected from BUS



A "tri-state buffer"
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Passes a "0" cleanly

Passes a "1" cleanly

E = 1 : Passes 1 or 0 cleanly (inverted)

E = 0 : Passes neither, no conduction,
                       high impedance

in == 0  then  out == 1
in == 1  then  out == 0                  Verilog wire signal values

X -- unknown (for various reasons)    1 -- voltage for "1"
Z -- high impedance                          0 -- voltage for "0"



   Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

MAR, memory 
address register:

which memory 
cell is accessed.

MDR, memory 
data register:

data sent to, or 
received from 
memory.

sets control signals 
as needed,
orchestrates



PHASE:
Fetch instruction

-- 1st step, state 18

PC    <== PC+1
MAR <== PC

(Happens in parallel,
finalized when clock 
pulse arrives.)



(continue)
Fetch instruction, first step:

Load MAR w/ address in PC

FSM Controller must set 
signal values for State-18:

GatePC   <== 1'b1
PCMUX   <== 2'b00
LD_PC    <== 1'b1
LD_MAR <== 1'b1

An instruction,
one word,
one symbol,
of program.

Fetch-instruction,
2nd step, state 33



Fetch-instruction,
3rd step

Instruction is 
remembered,
 ie., "registered" in
IR

Control signals for 
state-35:

  GateMDR <== 1'b1
  LD_IR      <== 1'b1

This completes the Fetch-instruction phase.

Overall effects:

    IR  <== 16'b 1011 0011 0101 0000  (an instruction, content of memory word)    
  ( IR  <== 16'h B350;  or  IR <== Mem[ 16'h 1234 ] )

    PC <== 16'b 0001 0010 0011 0100 (a 16-bit memory address)
  ( PC <== 16'h 1235  )



Decode phase

Next state of controller
is determined by

    IR[ 15 : 12 ]

the "opcode" portion of the 
instruction. E.g.,

    IR[ 15 : 12 ] = 4'b1011

next state is State-11
( or, State-B, in hex )



Evaluate Address phase

Calculated in addrArith unit.
Sources for calculation are:

--- any of 8 registers in RegFile
--- PC
--- IR

Destination of calculated address is, 

--- (1) MAR, to transfer data 
between memory and register: LDR, 
STR

or

--- (2) PC, to jump to next 
instruction: JMP, BR, INT, TRAP



Fetching Operands could mean,

(1.) move data from memory to a 
register (e.g., LD)

or

(2.) make data available to ALU
(e.g., ADD) possible from some 
of the IR's bits, but usually from a 
register.

LC3's "load from memory" 
instructions (LD, LDR, LDI) do 
nothing after copying from the 
MDR to a register; ie., they have 
no further execution phases.

Execution could mean,

(1.) Performing an ALU 
operation and making result 
available on BUS
( e.g., ADD, SUB, NOT)

or

(2.) Load the PC with an 
address calculated in 
Evaluate Address phase, or 
from another source (e.g., 
interrupt vector).

Instructions that do (2.) are 
JMP, BR, TRAP, as well as 
system generated action 
from hardware, interrupts 
and exceptions.



--- No instruction executes every phase.

--- Multiple instructions could be simultaneously in 
different phases. (How about same phase?)

--- Some phases must wait for the previous phase to 
complete (eg., memory access)

Store could mean,

(1.) write ALU result 
to a register.

(2.) copy from a 
source register to 
destination register.

(3.) copy from a 
register into a 
memory location.

   Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result



Two memories, one for instructions, one for data.
Layed out as a "pipeline" ==> more parallelism.

We are principally talking about the processor.

A wider view includes many other devices 
coupled together as an entire system.

The configuration of the system may include 
many other components, such as dedicated 
communication channels for video, GPUs, ...

How do we map our 



Question: What can a person (computer) do, 
given a set of instructions to follow.

--- Works for any person (unambiguos)
--- Input is a string of symbols 
      (from a finite set of symbols)
--- Output is a string (from same set)

--- Read a symbol
--- Look up rule
--- Write a symbol
--- Move tape
--- Change state

A Few Details

--- Starts in a particular state
--- Stops in a "Halting" state, or not at all
--- Can go forever
--- Can always get more tape:
       --- more input (or maybe finite input)
       --- more output

What Is A State (of mind)?

Version-1:
--- I know I am doing addition
--- I know I am adding the 5th column
--- I know I have seen the number 5 in the top row
--- I know I have seen the number 2 in the bottom row

Version-2:
--- Physical state is momentary value of all measurables
--- State change is affected by interactions w/ environment
--- Instantaneous environmental impact is current symbol
--- Rule-based state change
--- Instantaneous effect on environment is output symbol



Big idea: don't build new hardware, 

Build one simulator

For every other (new/special) machine, 
describe and simulate.

Build one simulator, and many descriptions.

--- describing == programming
--- simulating == executing

Language for describing TMs?

--- The rule table describes a TM. Simple!
--- Or, devise a programming language. More productive.
--- Is the language Turing complete (can describe any TM)?

A Turing Machine
          that 
Simulates other Turing Machines

Every computation can be modeled 
as some Turing Machine.

Doing computation X means
building and running TM-x.

Simultation-step-1:
    Find M's R/W location, read input symbol, A

Simulation-step-2:
    Find M's state, S

Simulation-step-3:
    Find Rule Table

Simulation-step-4:
    Search for rule for State S
    Check if input == A
    If S and A do not match Rule, find next Rule

Simulation-step-5:
    Find Rule's output symbol, B
    Find R/W head's cell
    Write B

Simulation-step-6:
    Find Rule's move G = (L or R)
    Find R/W head's cell
    Write R/W head location mark to L or R cell

Simulation-step-7:
    Find Rule's next-State, N
    Find M's current-state cell
    Write N



Eham: Computation is everywhere.
Drah: Where?
E: Everywhere!
D: A car crash?
E: Yes.
D: A doll house?
E: Yes.
D: Me?
E: Yes.
D: What is the same about them?
E: They all change.
D: So, computation is change?
E: Yes.
D: Everything changes, so 
computation is everywhere?
E: Yes.
D: What is computation?
E: Change.

D: So, everything changes, and because 
everything changes, everything is 
computation, and computation is change.
E: Yes!
D: Oh.
E: You see, it is really quite simple.
D: How simple?
E: There is a model.
D: A model?
E: Yes.
D: How is there a model?
E: Things are one way, then they are 
another.
D: And that means there is a model?
E: Exactly.
D: How do I know there is a model?
E: That is an existence proof.
D: What is?
E: I just said there is a model, didn't I?

D: And a model means things are one 
way, then another.
E: Now you've got it.
D: Isn't that the same as change?
E: Quite right.
D: So, a model is change and change is 
computation and change is computation 
because there is a model?
E: See, now you're getting the hang of it.
D: Oh.



D: I am a computer?
E: Without a doubt. When you change, which you do 
constantly, you are computation.
D: Then, I'm not me before, nor me after, but I'm me as I 
change?
E: Computation is everything and everywhere, all things 
are changing, you are changing, you are computation.
D: What if I don't change?
E: Everything changes.
D: So, there is nothing that doesn't change?
E: That's right, nothing doesn't change.
D: So nothing isn't computation. Does nothing exist?
E: Of course nothing exists. There is zero, zero exists.

D: So, what is a computer?
E: Something that does computation.
D: Doing computation?
E: That's it, computing.
D: So, computers compute?
E: Obviously.
D: And computing is change?
E: What else could it be?
D: Everything changes, so everything is a 
computer?
E: Yes, absolutely.

D: So 0 is not computation?
E: That's right, because 0 is nothing. If it were something, 
then it would be computation, because all things change.
D: So, does 1 exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, 0 and 1, I mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
D: But, if computation is everywhere, where are 0 and 1?
E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only 1 of them 
there.
D: So that's the existence of 1?
E: What could be clearer?


