
Lec-4-vonNeumann

What we are looking for

-- A general design/organization

-- Some concept of generality and completeness

-- A completely abstract view of machines
 a definition
 a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene,
listen to

Dave Patterson:

 Computer Architecture is Back:
 Parallel Computing Landscape

http://www.youtube.com/watch?v=On-k-E5HpcQ

We need a language rich enough to describe

 ---- any function, next-state or data operation
 ---- read/write
 ---- how to change to next state of M

then we can describe ANY machine, and simulate it.

(input = s1 / output = s5 / move = L)

 Description
 of machine
 M
 in some
 "language"

We need:
1) To keep track of M's state
2) read/write data symbols
3) data operations
4) next-state function F(state, input)

nand(a, b) ===> f
nand(c, d) ===> e

Program describes completely, how
--- Machine M changes state
--- next state depends on current state and current input
--- output depends on input and M's current state
--- M "moves" to another location to read next symbol

 State input output move Next

Need some way for the machine to
"know" what the outcome was of
calculating the next state.

NB--It's not obvious what capabilities we need.
Can we find a model that could tell us that?

Memory can be thought of as
an array, the address is the
array index:

 Memory[address] <== in
 out <== Memory[address]

Recreate the branched
graph in linear memory.
Execution follows a path
through graph.

ADD SUB
MULTIPY DIVIDE
 ...

Load Reg, Address
Store Reg, Address

Push Reg
Pop Reg

Necessary for TM completeness:
--- Changing M's state
--- Go to other part of description
--- depending on input/data

Jmpz Addr1

 Jmp

Two devices cannot both set the
signal value on a wire at the same
time. E.g., A says it's "0" and B says
it's "1".

BUS is shared between devices. The controller
"enables" exactly one of the tri-states at a time; e.g.,

Busses (because you see them here and there)

Turing View of a Computer

--- a machine can be described as a table of rules
 (current-state, input ===> output, next-state)

--- input, a symbol, is read from "memory"
--- a rule is applied according to
 --- what the current state is
 --- which symbol was read
--- output, a symbol, goes to "memory"
--- the machine changes state
--- repeat

von Neumann View of a Computer

--- a "program" is a sequence of
 step-by-step instructions

--- instructions are read from "memory"
--- the instruction is read into a "register"
--- a controller "executes" the instruction
 --- data is read from "memory"
 --- a "register" remembers what was read
 --- an operation changes the data
 --- a register stores the result
 --- the result is written to "memory"
--- repeat

 How they correspond:

 Turing von Neumann

 a State A section of the program
 a change of state jumping to a different section
 a rule's output part a section that produces a new output
 a rule's state-change part a section that calculates the next jump

We usually think of a signal as going from one place
to another along a wire. E.g., device A sends a "0" to
device B.
Device C cannot use the same wire to send to B,
even at a different time. But, maybe we can?

A is connected to BUS
B is disconnected from BUS

A "tri-state buffer"

G

S D

DS

DS

G

S D

DS

DS

Passes a "0" cleanly

Passes a "1" cleanly

E = 1 : Passes 1 or 0 cleanly (inverted)

E = 0 : Passes neither, no conduction,
 high impedance

in == 0 then out == 1
in == 1 then out == 0 Verilog wire signal values

X -- unknown (for various reasons) 1 -- voltage for "1"
Z -- high impedance 0 -- voltage for "0"

 Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

MAR, memory
address register:

which memory
cell is accessed.

MDR, memory
data register:

data sent to, or
received from
memory.

sets control signals
as needed,
orchestrates

PHASE:
Fetch instruction

-- 1st step, state 18

PC <== PC+1
MAR <== PC

(Happens in parallel,
finalized when clock
pulse arrives.)

(continue)
Fetch instruction, first step:

Load MAR w/ address in PC

FSM Controller must set
signal values for State-18:

GatePC <== 1'b1
PCMUX <== 2'b00
LD_PC <== 1'b1
LD_MAR <== 1'b1

An instruction,
one word,
one symbol,
of program.

Fetch-instruction,
2nd step, state 33

Fetch-instruction,
3rd step

Instruction is
remembered,
 ie., "registered" in
IR

Control signals for
state-35:

 GateMDR <== 1'b1
 LD_IR <== 1'b1

This completes the Fetch-instruction phase.

Overall effects:

 IR <== 16'b 1011 0011 0101 0000 (an instruction, content of memory word)
 (IR <== 16'h B350; or IR <== Mem[16'h 1234])

 PC <== 16'b 0001 0010 0011 0100 (a 16-bit memory address)
 (PC <== 16'h 1235)

Decode phase

Next state of controller
is determined by

 IR[15 : 12]

the "opcode" portion of the
instruction. E.g.,

 IR[15 : 12] = 4'b1011

next state is State-11
(or, State-B, in hex)

Evaluate Address phase

Calculated in addrArith unit.
Sources for calculation are:

--- any of 8 registers in RegFile
--- PC
--- IR

Destination of calculated address is,

--- (1) MAR, to transfer data
between memory and register: LDR,
STR

or

--- (2) PC, to jump to next
instruction: JMP, BR, INT, TRAP

Fetching Operands could mean,

(1.) move data from memory to a
register (e.g., LD)

or

(2.) make data available to ALU
(e.g., ADD) possible from some
of the IR's bits, but usually from a
register.

LC3's "load from memory"
instructions (LD, LDR, LDI) do
nothing after copying from the
MDR to a register; ie., they have
no further execution phases.

Execution could mean,

(1.) Performing an ALU
operation and making result
available on BUS
(e.g., ADD, SUB, NOT)

or

(2.) Load the PC with an
address calculated in
Evaluate Address phase, or
from another source (e.g.,
interrupt vector).

Instructions that do (2.) are
JMP, BR, TRAP, as well as
system generated action
from hardware, interrupts
and exceptions.

--- No instruction executes every phase.

--- Multiple instructions could be simultaneously in
different phases. (How about same phase?)

--- Some phases must wait for the previous phase to
complete (eg., memory access)

Store could mean,

(1.) write ALU result
to a register.

(2.) copy from a
source register to
destination register.

(3.) copy from a
register into a
memory location.

 Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

Two memories, one for instructions, one for data.
Layed out as a "pipeline" ==> more parallelism.

We are principally talking about the processor.

A wider view includes many other devices
coupled together as an entire system.

The configuration of the system may include
many other components, such as dedicated
communication channels for video, GPUs, ...

How do we map our

Question: What can a person (computer) do,
given a set of instructions to follow.

--- Works for any person (unambiguos)
--- Input is a string of symbols
 (from a finite set of symbols)
--- Output is a string (from same set)

--- Read a symbol
--- Look up rule
--- Write a symbol
--- Move tape
--- Change state

A Few Details

--- Starts in a particular state
--- Stops in a "Halting" state, or not at all
--- Can go forever
--- Can always get more tape:
 --- more input (or maybe finite input)
 --- more output

What Is A State (of mind)?

Version-1:
--- I know I am doing addition
--- I know I am adding the 5th column
--- I know I have seen the number 5 in the top row
--- I know I have seen the number 2 in the bottom row

Version-2:
--- Physical state is momentary value of all measurables
--- State change is affected by interactions w/ environment
--- Instantaneous environmental impact is current symbol
--- Rule-based state change
--- Instantaneous effect on environment is output symbol

Big idea: don't build new hardware,

Build one simulator

For every other (new/special) machine,
describe and simulate.

Build one simulator, and many descriptions.

--- describing == programming
--- simulating == executing

Language for describing TMs?

--- The rule table describes a TM. Simple!
--- Or, devise a programming language. More productive.
--- Is the language Turing complete (can describe any TM)?

A Turing Machine
 that
Simulates other Turing Machines

Every computation can be modeled
as some Turing Machine.

Doing computation X means
building and running TM-x.

Simultation-step-1:
 Find M's R/W location, read input symbol, A

Simulation-step-2:
 Find M's state, S

Simulation-step-3:
 Find Rule Table

Simulation-step-4:
 Search for rule for State S
 Check if input == A
 If S and A do not match Rule, find next Rule

Simulation-step-5:
 Find Rule's output symbol, B
 Find R/W head's cell
 Write B

Simulation-step-6:
 Find Rule's move G = (L or R)
 Find R/W head's cell
 Write R/W head location mark to L or R cell

Simulation-step-7:
 Find Rule's next-State, N
 Find M's current-state cell
 Write N

Eham: Computation is everywhere.
Drah: Where?
E: Everywhere!
D: A car crash?
E: Yes.
D: A doll house?
E: Yes.
D: Me?
E: Yes.
D: What is the same about them?
E: They all change.
D: So, computation is change?
E: Yes.
D: Everything changes, so
computation is everywhere?
E: Yes.
D: What is computation?
E: Change.

D: So, everything changes, and because
everything changes, everything is
computation, and computation is change.
E: Yes!
D: Oh.
E: You see, it is really quite simple.
D: How simple?
E: There is a model.
D: A model?
E: Yes.
D: How is there a model?
E: Things are one way, then they are
another.
D: And that means there is a model?
E: Exactly.
D: How do I know there is a model?
E: That is an existence proof.
D: What is?
E: I just said there is a model, didn't I?

D: And a model means things are one
way, then another.
E: Now you've got it.
D: Isn't that the same as change?
E: Quite right.
D: So, a model is change and change is
computation and change is computation
because there is a model?
E: See, now you're getting the hang of it.
D: Oh.

D: I am a computer?
E: Without a doubt. When you change, which you do
constantly, you are computation.
D: Then, I'm not me before, nor me after, but I'm me as I
change?
E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if I don't change?
E: Everything changes.
D: So, there is nothing that doesn't change?
E: That's right, nothing doesn't change.
D: So nothing isn't computation. Does nothing exist?
E: Of course nothing exists. There is zero, zero exists.

D: So, what is a computer?
E: Something that does computation.
D: Doing computation?
E: That's it, computing.
D: So, computers compute?
E: Obviously.
D: And computing is change?
E: What else could it be?
D: Everything changes, so everything is a
computer?
E: Yes, absolutely.

D: So 0 is not computation?
E: That's right, because 0 is nothing. If it were something,
then it would be computation, because all things change.
D: So, does 1 exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, 0 and 1, I mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
D: But, if computation is everywhere, where are 0 and 1?
E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only 1 of them
there.
D: So that's the existence of 1?
E: What could be clearer?

