
NAME: _____________________

< 1 * 1 * 1 * L * 1 >

< 1 * 11 * 11 * L * 11 >

< 1 * 111 * 11 * R * 111 >

< 11 * 1 * 1 * L * 1111 >

< 11 * 11 * 1 * R * 111 >

< 11 * 111 * 1 * R * 11 >

< 111 * 1 * 1 * R * 11 >

< 111 * 11 * 1 * L * 1 >

< 111 * 111 * 1 * R * 111 >

< 1111 * 1 * 111 * L * H >

< 1111 * 11 * 111 * L * H >

< 1111 * 111 * 111 * L * H >

At right is a unary-encoded description of a TM,

M1. Each row is a rule, and as input to a UTM the

description would be laid out on the tape left-to-

right, starting with the first row. The start state is

encoded as "1". A halting state has the symbol "H"

in the next-state field of every rule for that state.

The symbol set for the UTM, U, includes the set of

characters { < , > , 1 , * , L , R , H }, as well as

some others. Exactly one character appears in each

of U's tape cells. E.g., the unary code, 111, occupies

three cells. So, spaces in this table do not indicate

empty cells: they are just there to make the table

more readable.
Assume the following encodings for M1:

states: 1 = A, 11 = B, 111 = C, 1111 = D;

symbols: 1 = x, 11 = y, 111 = z.
Q. Fill in the missing labels on the state-
transition arcs in M1's diagram at right.
Assume state D does a final "z" output,
moves L, and then M1 halts.

M1 and M2 are shown below as box diagrams with start

and halting states. S is the halting state for M2. We want to

build a new machine, M3, using M1 and M2. M3 starts in

state A, and transitions to P instead of halting in state D.

M2 uses M1's symbol set and also has 4 states: P, Q, R,

and S. So, to code states for M3, we code P as 11111, Q as

111111, and so forth.

Q. To create a description of M3 we append a
description of M2 to M1's description, modifying rules
as needed. How many rules in the description of M3?
Explain.

Q. Show any rules that need to be modified to form the description of M3 as (1) labeled state
transition arcs between two of M3's states, and (2) as unary-encoded rules from M3's
description.

Description(M1 , U-ISA) Description(M2 , U-ISA)

Below is shown U's initial tape with U about to simulate M3. The descriptions of M1 and M2 have been

modified appropriately as indicated above, and input for M3, suitably encoded, is on the left. In between is

an area for U to keep track of M3's current state. "U-ISA" is the encoding scheme used above.

(Encoding of M3's initial tape)

Q. How many of U's tape cells are needed, at most, to record M3's current
state at any point in the simulation of M3's execution? Explain.

Q. How many of U's tape cells are needed, at least, to encode the initial state of M3's tape?
Assume the input consists of 5 repeats of the string "xyz". Recall that U needs to have symbols
separating M3's individual simulated tape cells, and that U needs an indicator to remember M3's
R/W head location. Explain your answer. Show any needed diagram.

Q. Suppose M1 were instead a machine that reads no input, and writes out a description of M2
encoded as above. That is, it starts up, writes out Description(M2 , U-ISA), and halts. If we
intend to have U simulate M1 and then when it halts, begin simulating M2, what symbol set would
M1 have to use? Explain. Suggest very briefly how M1 might work.

