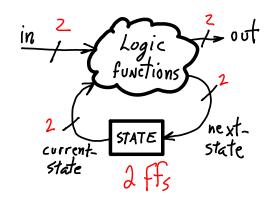
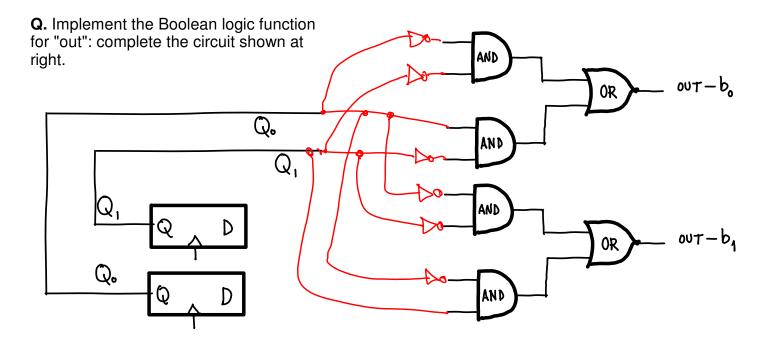

Implement a FSM for the Moore machine described by the state-transition diagram below. Use 1-bit D flipflops and 2-input Boolean logic gates {AND, OR, NOT}.

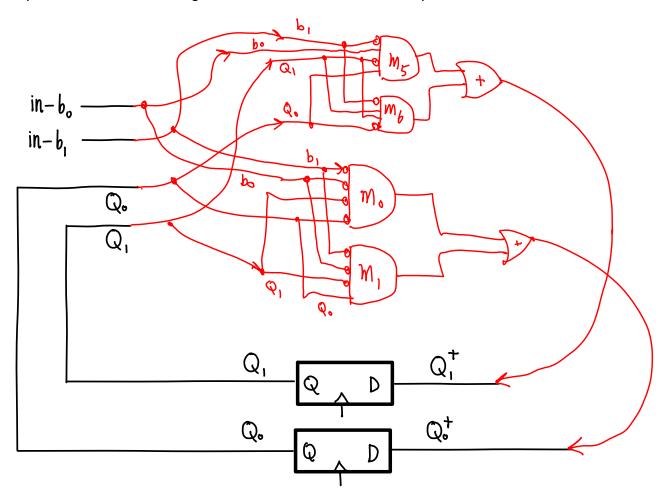
Preliminary steps:


Q. Define a Boolean encoding of the input symbol set {a, b, c, d}; that is, show how to implement a 4-symbol set using 2-bits. Also, define a binary encoding of the machine's states. Complete the tables at right.

- **Q.** Complete the general FSM implementation diagram at right. Specify the number of wires (bits) on each signal paths, "in", "out", "current-state", and "next-state". Specify the number of state elements (1-bit D FFs).
- **Q.** Specify the next-state and output logic functions: complete the tables below.


in corrent- b, bo Q, Qo	$\frac{\text{next-}}{\text{state}}$ $Q_1^+ Q_0^+$	in b, bo	current- state Q. Q.	next- state Q+Q+
00 00 01 00 10 00 11 00 00 01	01 m. 00 00 00 00 01 m. 10 10 10 10 10 10	10 11 00 01 10 11	01 01 10 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a Moore machine:
output is only dependent
on state
on state


symbol	Code <u>bibo</u>		
a	00		
<u>ე</u>	10		code
d	111	state	Q,Q ₀
		So	00
		Sı	0 1
		S ₂	10
		•	•

current- state Q. Q.	out b. b.
\$ 00	Ol-Q,Q,
\$ 01	Ol-Q,Q,
\$z 10	Don't
\$ 11	care

Q. Implement the Boolean logic function for "next-state": complete the circuit shown below.

