
final exam

COSC-120, Computer Hardware Fundamentals, fall 2012

Computer Science Department

Georgetown University

NAME ___

Open books, open notes (laptops included). Answers w/o explanation get 0 credit. Credit is based on
your explanation, not correctness. Show and explain all your work from first thoughts to final answer.

I.

At right is part of the LC3 controller's state-

transition diagram. The parts missing handle

interrupts (state 49), and exceptions (states 8

and 13). The questions that follow assume
the controller has just entered state 18.

Shown below are the relevant portions of the

LC3's state. Register values and addresses

are shown in hex, except for the PSR, which

is shown as bits.

Memory content is translated into LC3 assembly language, except that offsets are shown as hex values instead of

labels. Data words are also shown as hex values.

LD R1, 9
AND R2, R2, 0
ADD R2, R2, R1
BRz 2
JSR 300
BRnzp 1
JSR 500
TRAP 25
0000
0000
0201
D000
0FFF

Q. Which instructions change the PSR content, according to the state-transition diagram?

0 - - - - - 1 1 1 - - - - - 0 1 0

Q. A clock cycle is 1 ns. Accessing memory takes 10 clock cycles; e.g., the controller remains in state
33 transitioning on the "R=0" arc 10 times before transitioning on the "R=1" arc to state 35. How long
does it take to complete an instruction fetch? That is, given we have just transitioned to state 18, how
long before we transition to state 32?

Q. How many clock cycles before the PC first contains a value greater than 02FF?

Q. How many words of memory are represented above by the program and its data? This includes every
word of the memory content shown. How many bits, in total?

Q. Assume memory address 0025 contains 0200. Will the program above ever make a jump outside of
the range 0200 to 1000? That is, is there any instruction shown above that will change the PC to have a
value less than 0200 or greater than 1000? If so, which instruction?

Q. Trace out the program's execution instruction-by-instruction: Just after completing an instruction's
execution (just after the LC3 next enters state 18), show (1) the CC bits, (2, 3) the number of states
entered and the number of ns elapsed since last entering state 18. Stop tracing when the PC first
contains 0208.

instr, executed N Z P # states # ns instr, executed N Z P # states # ns

Q. Suppose again that the memory location at address 0025 contains 0200. Also assume the
instructions at addresses 0200+5+300 and 0200+7+500 are JMP R7. Will this program enter an infinite
loop?

Q. What is the content of R2 just after execution of the ADD instruction? Given the assumptions of the
above question, will execution ever reach 0200+7+500?

Q. Suppose Memory[0025] = 0211 20c. Will the program's execution ever cause a transition to state
13? Recall the decimal=hex=binary equivalents:
10=A=1010, 11=B=1011, 12=C=1100, 13=D=1101, 14=E=1110, and 15=F=1111.

Q. If instead Memory[0025] = 0208, will the program's execution ever cause a transition to state 13?

Q. In all the questions above, any possibility of a transition to state 49 is ignored; that is, we assumed that
interrupts would not occur. What information given above about the state of the machine guarantees that
interrupts cannot occur?

II. Suppose we have a physical 32-bit LC3 machine (32-bit data path, 32-bit registers,

32-bit addresses, 32-bit memory words). Suppose its memory is byte-addressable (a 32-

bit word can be fetched starting from any byte location), and it is little-endian (the lowest

addressed byte is the least significant 8 bits). Suppose the memory content is,

 address content byte (in hex)

---------------- -----------------------

 12345678 30

 12345679 31

 1234567A 32

 1234567B 33

 1234567C 34
 1234567D 35

 1234567E 36

 1234567F 37

 12345680 38

Because it is little-endian, if R6 = 12345678, executing these instructions,

 LDR R1, R6, 0
 LDR R2, R6, 1

results in,

 R1 = 33323130

 R2 = 34333231

Q. Suppose we order our LC3 with the maximum amount of memory installed. What is the physical
memory size in 32-bit words? In bytes?

Q. Recall that when we send a word to the LC3's DDR (Display Data Register), only the low byte is
displayed, the upper bytes are ignored. I/O is mapped to the 2^9 (512) addresses at the big-address end
of memory, similarly to the original LC3 with addresses extended to 32 bits. Consider this code,

 AND R3, R3, 0
 ADD R3, R3, 8 ;--- initialize loop counter
LOOP: LD R1, R6, 0
 STI R1, DDR
 ADD R1, R1, 1
 ADD R3, R3, -1
 BRp LOOP
 TRAP x25
 DDR: .FILL xFFFFFE06 ;--- Pointer to DDR

Show the display's output, assuming the output cursor was originally in the upper-left character position.

ASCII code char

--------------- ------

 x30 '0'

 x31 '1'

 x39 '9'

Q. What would be in R3 after execution of this program fragment?

 LDR R3, R6, 3
 ADD R3, R3, R3
 ADD R3, R3, R3
 ADD R3, R3, R3
 ADD R3, R3, R3

Q. What does the following code display?

 LDR R0, R6, 0 ;-- R0 <=== Mem[R6=12345678]
 LD R4, MASK ;-- R4 <=== MASK
 LD R5, CNTR ;-- R5 <=== CNTR
 AND R1, R1, 0 ;-- R1 <=== 0
LOOP: AND R3, R4, R0 ;-- is current bit 0?
 BRz SHIFT
 ADD R1, R1, 1
SHIFT: ADD R1, R1, R1
 ADD R4, R4, R4
 ADD R5, R5, R5
 BRnp LOOP ;-- if not done, do next bit
DONE: STI R1, DDR
 TRAP x25 ;-- HALT

MASK: .FILL x00000100 ;--- Note ":" is ignored for labels.
CNTR: .FILL x01000000
DDR: .FILL xFFFFFE06

Q. Treating VALUE as an integer variable, what is the effect of this code?

AND R0, R0, 0
ADD R0, R0, 1
ADD R0, R0, R0
ADD R0, R0, R0
NOT R0, R0
LD R1, VALUE
ADD R1, R1, R0
ST R1, VALUE

VALUE: .FILL x00001234

Q. We want to turn on the n-th bit
of R0, where n is a positive integer
in R5, without changing other bits
of R5. What are the max and min
n can be, and still make sense
(show in decimal and hex)?
Complete the code at right.
Assume R1 contains 1.

L1: BRz L2
 ADD R1, R1, R1
 ADD R5, R5, -1
 BRnzp L1
L2: NOT R0, R0
 NOT R1, R1
 R0, R0, R1
 NOT R0, R0

Q. In order to get a result value of 1, what positive value would we add to the value represented by
the content of R1? Assume R1's content is a number encoded in 32-bit floating point format.

 bits in R1: 0 01111111 11100000000000000000000

Recall that the 32-bit IEEE floating-point standard has 1 sign bit, 8 exponent bits in excess-127 code,
and the remaining bits as the fractional part.

Q. Encode the value 1/16 in IEEE 32-bit FP format.

Q. The bits of R1 shown above are 3FF00000 in hex. Treated as a 2's complement number, what value
should we add to R1 to get the result value of 2^30 (1 G)?

III. All following questions assume the original, 16-bit, 16-bit-word addressable, LC3.

Q. Fill in the values in the assembler's
symbol table (at right) after the first pass
of assembly of this code:

 .ORIG x3000
here
 LD R1, there
 TRAP x25
there
 .FILL x1234
 .END

Q. Suppose OS code at x0200 sets up
the Vector Tables, sets R6=x0000,
enables keyboard interrupts, and jumps
to x3000 setting PSR[15] = 1 (user
mode) and PSR[10:8] = 000 (priority).
What problem might occur? User's
code is:

L: ADD R6, R6, -1
 BRnzp L

