
Implement uSeq's FSM's
 --- Next-state function
 --- Output function

i --- # bits input to FSM (IR, PSR, ...)
j --- # bits of current state

k = i + j --- # function input/address bits

n + j --- # output bits, in total

We know:
Any function can be
implemented in AND-OR

Wasted Space?

IN + current-state == (i+j)-bit address
 --- Many addresses ==> One LC3 state

LC3:
 j = 6 (2^6 = 64 possible states, 59 used)
 i = 9 (bits input: IR, PSR, ...)

ONE LC3 state ==> (2^9 = 512) ROM rows.
E.g., state-0, BR:

 state IN ROM address
 000000 000000000 x0000
 000000 000000001 x0001
 000000 000000010 x0002

 000000 111111111 x01FF

 --- Uses 1-bit for next state (BEN).
 --- All other inputs ignored.

Next-state is either 18 or 22.
No non-zero outputs.

 --- 256 ROM rows contain
 010010 00000000...000 (6+40 bits)
 --- 256 ROM rows contain
 010100 00000000...000 (6+40 bits)

Note:
Could used control "codewords".
Decode to actual control signals.

OK, if not every control bit combo
is used. Saves columns of ROM.

Aside: If the next state is 0, then next output is 0
(rows 00 and 11). What if that wasn't so? Would
this be a Mealy Machine?

Note:

An instruction's 1st state in its execution control path is,

 00xxxx,

 where xxxx = IR[15:12] is its opcode.

No other states have 00 as a prefix.

59 states. We need 6 bits to
designate state. 2^6 = 64.

IR[15:12]

CURRENT-STATE: uMAR.out (addr)

OUTPUT: All control signals, selected by addr.

NEXT-STATE: Not so simple! Determined by:

 --- IR.opcode, if IRD == 1

 uMAR <== { 00, IR[15:12] } (e.g., 001001 for NOT instruction)
 (IRD is only set for state-32)
 --- Otherwise
 COND bits are mixed with INT, PSR[15], BEN, R, IR[11]
 JUMP address is modified accordingly.

Current-State == x20 == 32 (DECODE)

IRD == 1

IR[15:12] == 0001 (ADD)

Next-State == 000001 (state 1)

Next-State: x12 == 18

JUMP is not altered if COND == 0, no control branching.

IR[11:9]

(+-R6: INT)

(R7: JSR,

IR[11:9]

IR[8:6]

But first, an easier method.

Let's have 2-way branching (except state-32).

Fields for both targets.

1-bit of input determines next state.

IF (I==1) AND (INT==1)
Then
 next-state <== Addr1
Else
 next-state <== Addr0

x21 == 100001 == 33

x31 == 110001 == 49

R: Mem-IO Ready

P: Privilege bit

B: Branch
A: Addressing mode (JSR, JSSR)

I: Interrupt

COND code i
alters JUMP[i]

LC3 FSM control for
interrupts/exceptions

18 fetch
MAR <= PC
PC <= PC+1

33, 35
MDR <= M
IR <= MDR

32 decode
BEN<=IR[11:9]&{N, Z, P}
 <IR[15:12]>

8 RTI
MAR <= SP
 <PSR[15]>

36, 38, 39 pop PC
MDR <= M
PC <= MDR
SP <= SP+1
MAR <= SP+1

40, 42, 34 pop PSR
MDR <= M
PSR <= MDR
SP <= SP+1
 <PSR[15]> 59 restore Ustack

Saved_SSP <= SP
SP <= SavedUSP

51 nothing

13 op exception
Vector <= x0101
MDR <= PSR
PSR[15] <= 0
 <PSR[15]>

49 INT
Vector <= INTV
PSR[10:8] <= IntPriority
MDR <= PSR
PSR[15] <= 0
 <PSR[15]>

37, 41 push PSR
SP <= SP-1
MAR <= SP-1
M <= MDR
43, 47, 48 push PC
MDR <= PC-1
SP <= SP-1
MAR <= SP-1
M <= MDR
50, 52, 54 jump
MAR <= Vector
MDR <= M
PC <= MDR

45 save Ustack
Saved_USP <= SP
SP <= Saved_SSP

44 priv exception
Vector <= x0100
MDR <= PSR
PSR[15] <= 0

Hardware Additions (privilege + memory protection).
 (low-cost additions)

1. TRAP switches to supervisor mode.

2. Return switches back to user mode.

 Have TRAP act like exception? Use RTI for return?

1.A TRAP's state-15 acts like state-13 (opcode exception), except for jump:

 Vector <== sys_bus <== MARMUX <== ZEXT <== { x00, IR[7:0] }
 MDR <= PSR

 PSR[15] <= 0

1.B Branch on PSR[15]: same as state-13's:
 to 37 or 45 (into interrupt chain). [Unused states: 15, 28, 30.]

1.C mux Vector's input:

 select = 0: the usual input

 select = 1: sys_bus

 Control logic?
 Don't redesign uStore to have more columns?
 a. Add uSeq output "state" (controller's current state).

 b. select == AND(x0F, state) [6-bit AND: select == 1 if state-15]
 c. caveat: a problem for pipelining?

2. RTI returns to calling code (restores privileges).

MORE ADDITIONS (low cost?)

Disable INTERRUPTS?

 --- A. handler needs time to set up its state before allowing a new interrupt.
 --- B. handler needs to disable multiple interrupts on same device.

 We have:
 --- Interrupt: PSR.Priority <== 2b'111
 --- Priority Comparator: (IntPriority > PSR.Priority)
 --- Effect: All interrupts are disabled initially on interrupt.

 We can:
 --- mask interrupts: device-status-register[14] <== 1b'0
 LDI R1, KBSR
 LD R2, BIT_14_MASK
 AND R1, R1, R2 ;--- There is also an "OR" macro, see src/lc3pre.
 STI R1, KBSR
 ...
 KBSR: .FILL xFE00
 BIT_14_MASK: .FILL xBFFF ;--- (1011 1111 1111 1111)

Oh, ok, we've already handled this.

Memory Protection?

 --- Privileged status is nice.
 --- Useless unless memory is protected.

 Need:
 --- Hardware to detect address + protection bits
 --- Exception for access violation

 Add:
 --- MPR, Memory Protection Register?
 16-bit addresses, 16-bits in MPR,
 --- divide into 16 "pages", one bit in MPR per page: (2^16)/(2^4) == (2^12) == 4k words per page.
 --- 0: super only, 1: user or super.
 --- Large-end 4 bits of address determines "page number"

 0000: OS space (x0000 - x0FFF)
 0001: OS space (x1000 - x1FFF)
 ...
 0011: User space (x3000 - x3FFF)
 ...
 1110: User space (xE000 - xEFFF)
 1111: OS space (xF000 - xFFFF)

 R/W protection: More than one bit per page?
 Multiple users: Owner bits?

 Mapping Addresses?
 --- virtual MAR
 --- physical MAR

 ==> runtime independence

