
Lec-stacksInterruptsFSM

How do we know a device is ready
 (has data or wants data)?

(1) Ask: poll the status register

(2) Have device tell us, don't ask device.

(a) who is "us"?

(b) how can a device talk to us?

(c) when can/will it speak?

(d) what should we do then?

(e) what about the currently executing
 program?

KB interrupt handler's job
is to move data from I/O
device register to memory.

KB handler stores data for
other program's use.

How does program get the
data?

Device does pseudo "Trap" on its own; gets OS's attention.

Interrupt handler code executes RTI (not RET) to restore interrupted
program's state, restarting fetch cycle at original location.

Running program never knows anything happened (unless checks w/ OS).

If OS is designed in such a way that work can be done even while IO
devices are busy, this saves a lot of cycles vs. polling.

Save state:
save PC, PSR (priv, prio, cc)
save regs

Restore state:
restore regs
restore PSR, PC

jsr PUSH_R0
...
jsr POP_R0

PUSH_R0:
add r6, r6, #-1 ;= R6--
str r0, r6, #0 ;= Mem[R6] <== R0
ret

POP_R0:
ldr r0, r6, #0 ;= R0 <== Mem[R6]
add r6, r6, #1 ;= R6++
ret

Could we implement new opcodes for
push/pop.

Other times we want HW push/pop?

;=========================
;= POP
;= Returns popped value in R0 and 0 in R5.
;= If stack underflow, aborts and returns 1 in R5.
;=========================
POP:

and r5, r6, #0 ; retVal <== 0

ld r1, stack_bottom ; r1 <== stackbottom
jsr NEG_R1 ; r1 <== -stackbottom
add r1, r6, r1 ; sp - stackbottom

brnz else ; if (sp - stack_bottom) < 0
jsr POP_R0 ; do pop
ret ; ret(0)
else: ; else
add r5, r5, #1 ; retVal++
ret ; ret(1)

stack_bottom: .FILL x4000

NEG_R1:
not r1, r1
add r1, r1, #1
ret

...
jsr POP
and r5, r5, r5
brp ERROR
...
POP:
....
NEG_R1:
...

Stack overflow? Check that PUSH does not have SP = x3F00.

What about clobbering registers? Callee save?
(R0 is clobbered anyway on pop, and SP should not be saved.)

If only one device, then ok, but what
about multiple devices?

How can we have exactly one device driving the
IRQ line? What if two devices want service at the
same time? Priority daisy chain:

Details: how does higher-priority device interrupt
lower priority?
How to tell which device caused interrupt?

Enabling interrupts:
Set KBSR[14] = 1 allows
controller to be interrupted.

The Daisy Chain setup prevents a low-priority
device from sending an IRQ when a high-
priority device sends IRQ.

Note that a 1 propagates through all the OR
gates to its right, and also disables all the tri-
states to its right.

ENCODER sends priority code of highest
priority device whose IRQ line =1.

KB: IRQ[4] ==> A_4 ==> code 100.

Interrupted
program has
priority PSR[10:8].

KB is on IRQ[4].

Priority encoder
has 8 inputs and 8
possible codes to
output. What if
none of the inputs
is non-zero?

The priority code
'000' means either
(1) no IRQ is non-
zero, or (2) IRQ[0]
is 1.

Extra output
"notZero" tells us
which is the case.

P&P's comparator
was ">=", not ">".
Why?

Processor interrupted, now what?
How to jump, where to jump?
Maybe like a trap?

TRAP:
 PC <== Mem[IR[7:0]]

Interrupt:
 PC <== Mem[?]

How to address into Vector Table?
(We'll come back to that.)

KB interrupt
handler's code

Interrupt routines can be
anywhere. OS fills in TVT,
EVT, and IVT at boot-time.

 ;;;-------------------------------
 ;;;-- kbInt - IVT x180:
 ;;;-- Keyboard interrupt service
 ;;;-------------------------------
 kb_INT_BEGIN:

;;;---- Disable interrupts, KBSR[14] <== 0.
;;;---- Read KBDR, store data.

 LDI R0, KBDR
 STI R0, KB_Buff_head
 ;;;-- Move head pointer.
 ;;;-- Enable interrupts, KBSR[14] <== 1.
 kb_INT_END: RTI

 kb_init_BEGIN:
 ;;;-- Set-up interrupt vector.
 LEA R1, kb_INT_BEGIN
 STI R1, KB_INT_vector
 ;;;-- Set-up KB_Data_Buffer.
 ;;;-- Set-up Trap routine vector.
 ;;;-- Enable KB interrupts.
 kb_init_END: RET

 kb_Trap_BEGIN:
 ;;;-- KB data-request service.
 kb_Trap_END: RET

 kb_ConstantDataArea:
 KB_INT_vector: .FILL x0180
 KB_TRAP_vector : .FILL x0033
 KBSR: .FILL xFE00
 KBDR: .FILL xFE02
 kb_VariableDataArea:
 KB_Data_Buffer: .BLKW #80
 KB_Buff_head: .BLKW #1

;;;=============================
;;;-- OS boot/initialization
;;;=============================
initOS_BEGIN:

 ;;---- Set up super's stack.
 ld _sp, SUPER_STACK_ADDR

 ;;---- Init traps, exceptions, and interrupts
 _jsr(kb_init_BEGIN)

 ;;---- jump to main(), never returns.
 _intsOn
 lea r7, mainOS_BEGIN
 jmp r7

initOS_END:

TRAP x33 ;;;---- Get KB data
 ... ;;;---- Use KB data

Also part of BusLogic is generating the address of the interrupting
device's vector.

if INT = 1
and state-18:

JUMP to Handler:

MAR <== Vector

MDR <== VT entry

PC <== MDR

This is the jump to
the interrupt handler
code. But what about
the executing code's
state?

E.g. KB interrupt

Priority Encoder sends IntPriority (100)

IntPriority addresses into INTV_ROM

INTV_ROM[100] == x80

Vector's prefix comes from word_x01

Vector <== { x01, x80 } == x0180

NOTE: The VectorMUX[1:0] control signal
selects according to whether this is a,

 2'b00: I/O hardware interrupt
 2'b01: Privilege exception
 2'b10: Opcode exception

This is all just a lookup table, but
addressing is split into two parts.

How to save state of interrupted program?

Push essentials to STACK (PSR, PC).

But what about stack pointer, R6?
User's SP or Super's SP?

How many users?
How many are being interrupted? Just one.

PSR input is muxed: if select (PSRMUX) is
 1'b0: input from sys_bus
 1'b1: input from control's SetPriv, IntPriority,
 and CC logic (separate load signals)

16-bit register, unused bits are 0

* Our LC3 is slightly
different: PSR.Priority gets
loaded with 111, Vector
register has all 16 bits of
VT address.

Suppose we had interrupted an interrupt
routine. What happens next after this
current interrupt routine finishes?

SR1MUX SR1out data is
 1'b00: RegFile[IR[11:9]] (SR field)
 1'b01: RegFile[IR[8:6]] (SR1 field)
 1'b10: RegFile[110] (R6/SP)

DRMUX data in goes to
 1'b00: RegFile[IR[11:9]] (DR field)
 1'b01: RegFile[111] (R7)
 1'b10: RegFile[110] (R6/SP)

RegFile source and destination select

--- User SP saved.
--- R6 <== savedSSP:
 SP set to OS stack.
--- User PSR on OS stack.
--- User PC-1 on OS stack.

--- PSR.Privilege = 0.
--- PSR.Priority = 7 *.
--- SP <== SP - 2.

--- PC at handler code,
 ready to fetch 1st instr.

LC3 FSM control for
--- Interrupts
--- Privilege Exception
--- Opcode Exception
--- Return from Interrupt

18, 33, 35 fetch
 MAR <= PC
 PC <= PC+1
 MDR <= M
 IR <= MDR

32 decode

8 RTI
 MAR <= SP

36, 38, 39 pop PC
 MDR <= M
 PC <= MDR
 SP <= SP+1
 MAR <= SP+1

40, 42, 34 pop PSR
 MDR <= M
 PSR <= MDR
 SP <= SP+1

59 restore Ustack
Saved_SSP <= SP
SP <= SavedUSP

51 nothing

13 op exception
 Vector <= x0101
 MDR <= PSR
 PSR[15] <= 0

49 INT
 Vector <= INTV
 PSR[10:8] <= IntPriority
 MDR <= PSR
 PSR[15] <= 0

37, 41 push PSR
 SP <= SP-1
 MAR <= SP-1
 M <= MDR
43, 47, 48 push PC
 MDR <= PC-1
 SP <= SP-1
 MAR <= SP-1
 M <= MDR
50, 52, 54 jump
 MAR <= Vector
 MDR <= M
 PC <= MDR

45 save Ustack
 Saved_USP <= SP
 SP <= Saved_SSP

44 priv exception
 Vector <= x0100
 MDR <= PSR
 PSR[15] <= 0

Some parts of P&P's hardware could be simplified for the sake of easier understanding.

The Vector register is loaded from what actually is a ROM, but doesn't look like one:
---- address inputs
 Priority bits (3)
 VectorMUX bits (2)
---- output
 16-bit Vector Table address

We could implement this as a 32-word ROM. Addresses that start with 00 would be for
hardware interrupts. For instance, address 00100 (Priority = 100 = 4) would be for the KB
interrupt. That word would contain the 16-bit address x0180.

All addresses that start with 01 (01000 to 01111) would be for the Privilege exception, and
contain the 16-bit address x0100. The low 3 bits are in effect ignored.

Addresses that start with 10 (10000 to 10111) would be for the Illegal Opcode exception, and
contain the 16-bit address x0101.

Of the 32 words, 22 are redundant. Space is wasted, but life is simpler?

