
 Assembly Language Programming Tools

src/lc3tools_v12.zip

Tools:
--- lc3as: .asm, assembly language text(ascii) ==> .obj, machine code
--- PennSim.jar, LC3 simulator (debugger)
--- lc3convert: .bin, machine language text(ascii) ==> .obj, machine code

Files:
--- .asm: text, assembly language code in ASCII
--- .obj, LC3 "load module": machine code plus header in BITS
--- .bin: text, binary rep. of machine code in ASCII

Building lc3tools (lc3as, lc3convert, ...):

 $> cd trunk/src
 $> make lc3tools

Compiling lc3tools depends on having these:
 -- unzip
 -- flex
 -- gcc
 -- tcl/tk

You can find these on cygwin, XCode, and MacPorts.

Set your shell's PATH variable!

 $> cd
 $> vi .bash_profile
 PATH="<path to LC3-trunk/bin>:${PATH}"
 $> source .bash_profile

Don't forget the ":". The "<path to LC3-trunk/bin>" is the full
path to your branch's bin/. You can find it this way: "cd" to
your LC3-trunk/bin, and then,

 $> pwd

Notes:

1. lc3tools comes as a zipped file. It must be unpacked.
src/Makefile has commands for this.

2. src/Makefile is set up to compile lc3as and put it into
"../bin/". Other executables land there also. To have access
to these, set your PATH variable.

3. Read Makefile to see what it does. Makefile serves as
documentation on how to get things done; so, it isn't
necessarily that you always use "make", you might do these
things by hand instead.

4. Things are set up under the assumption that temporary
files (.obj, .bin, .v, .out ...) go to run/ and are used there. No
need to add these temporaries to your branch.

5. PennSim.jar reads .obj files. We also will be loading our
.obj code into our LC3's memory in our testbench. For that,
the .obj must be translated BACK to ascii because verilog
can only read ascii files. The tool that does this is "obj2bin"
and the result is a .bin file.

.orig x3000

ld r1, six
ld r2, number
and r3,r3,#0

again add r3,r3,r2
add r1,r1,#-1
brp again

halt

number .blkw 1
six .fill x0006

.end

0011000000000000
0010001000000111
0010010000000101
0101011011100000
0001011011000010
0001001001100001
0000001111111101
1111000000100101
0000000000000000
0000000000000110

--- foo.obj contains BITS, not ascii codes for "1" and "0".

--- Use this to "see" the bits (you can't unless they are translated and printed):

 $> od -t x1 foo.obj

displays file's contents, expressed as 1-byte integers in hex notation (x1), first byte in file to last:

0000000 30 00 22 07 24 05 56 e0 16 c2 12 7f 03 fd f0 25
0000020 00 00 00 06
0000024

Yellow are addresses (offsets) into the file (in hex). Blue is the .obj file header.

Notice the big-endian order. This is most likely an artifact of the way the lc3tools' simulator was written. It does not

reflect the LC3 micro-architecture because LC3's memory is not byte-addressable.

Assembler (lc3as) Directives (to control the assembly process):

.orig: puts a load address into the .obj load-object file's header.

.end: tells assembler, this is the end of source code.

.blkw: tells assembler, create n blank words (all zeroes).

.fill: tells assembler, put these bits into a word.

The assembler produces machine code words:
--- ONE PER LINE expressing an LC3 instruction
--- ONE PER LINE where there is a .fill directive
--- n PER LINE where there is a .blkw directive

The assembler also calculates offsets for us using symbols. Symbols
stand for memory addresses (starting for the .orig address). Offsets are
calculated by subtraction. Symbols refer to the next instruction's location.

Assembly:
strings (instructions) ==> machine words (LC3 instructions)
names ==> offsets in instruction words
directives (storage) ==> machine words (either 0s or some n)

There could be more in .obj:
names (symbols) ==> name/offset pairs (Symbol Table)
names referring to other files ==> translation of "external" source code

File Formats:
Standards define location and representation of information in .obj files.

Linker/Loader:

--- Combine separate load
object modules

--- Fix offsets (references)

--- Copy to memory

Source Code:

AND R3, R3, #0 ; This line of code needs explanation.

Comments:
everything on the line after a ";" is
ignored. Also, all white space is
ignored.

Operation name:
maps 1-1 to opcode

NB--there are some
special translations,
eg., "Halt".

Three ways to write the same instruction:

and r3, r3, b10101 and r3, r3, x15 and r3, r3, #21

If this is a label
 Is symbol in ST?
 yes:
 Does symbol have a value?
 yes: error("multiple defs")
 no: value <== LC
 no:
 string <== symbol
 value <== LC
If this is an instruction
 If there is a symbol reference
 Is symbol in ST?
 no:
 string <== symbol
If this is an .EQ symbol definition
 string <== symbol on lhs
 value <== value on rhs
If this is .FILL or .BLKW
 LC += size of memory reserved

.ORIG x3000

start:

not r1, r0
and r0, r0, r1 ; r0 <== 0
ld r1, cnt

loop: brn done
add r0, r0, #1

 brnzp loop
data:
cnt: .fill x0005
done:

trap x25

.END

PASS 1: Find all symbols and record offsets: Built Symbol Table.
 initialize: LC <== value in .ORIG declaration

PASS 2: replaced all symbol references w/ offsets,
 translate instructions to machine code.

.ORIG x3000

start:

not r1, r0
and r0, r0, r1
ld r1, cnt

loop: brz done
add r0, r0, #1

 brnzp loop
data:
cnt: .fill x0005
done:

trap x25

.END

String Value
"start" 3000
"cnt" 3006
"loop" 3003
"data" 3006
"done" 3007

x3000
not r1, r0
and r0, r0, r1
ld r1, (cnt - LC - 1)
brz (done - LC - 1)
add r0, r0, x01
brnzp (loop - LC - 1)
x0005
trap x25

x3000
not r1, r0
and r0, r0, r1
ld r1, (3006 - 3002 - 1)
brz (3007 - 3003 - 1)
add r0, r0, x01
brnzp (3003 - 3005 - 1)
x0005
trap x25

0011 0000 0000 0000
1001 001 000 111111
0101 000 000 0 00 001
0010 001 000000011
0000 010 000000011
0001 000 000 1 00001
0000 111 111111101
0000 0000 0000 0101
1111 0000 0010 0101

Simulator work flow

1. Create an assembly language source file using any text editor ===> f.asm

2. Assemble source code to load object:
 lc3as f.asm ===> f.obj

3. Load machine code into PennSim.jar for testing, eg.

 PennSim.File.Open_OBJ_file

4. Load via verilog, simulate your LC3
 a. convert f.obj to f.bin (use obj2bin, see src/Makefile)
 b. write a verilog testbench that loads f.bin into LC3's memory (see test.jelib)

Offset calculation and instruction translation to machine code
are done a line at a time, looping until input is exhausted.

More on assembly language directives

 .STRINGZ "abcd"
.FILL x0061
.FILL x0062
.FILL x0063
.FILL x0064
.FILL x0000

 .BLKW 3
.FILL x0000
.FILL x0000
.FILL x0000

.FILL <data word>
<data word> ===> .obj file.

NB--Loader could do part of job of
assembler: leave ".BLKW 3" in header,
fill memory at load time.

 .ORIG x3000
 LD R1, data
data:
 .FILL x0061
 .END

0011000000000000
0010010000000000
0000000001100001

0010010000000000
0000000001100001

Loader strips header,
leaving machine code and
data.

;--
; parityFSM.asm
; The parity finite-state machine.
;--
 .ORIG x3000

;---- start up ----
 lea r1, Input ;-- r1 points to input tape/memory area.
 add r1, r1, x-1 ;-- (minus 1 so states initially compute correct read location.)
 lea r2, Output ;-- r2 points to output area.
 add r2, r2, x-1 ;-- (minus 1 as above.)

;---- state 0 -----
State_0:
 add r1, r1, x1 ;-- r1++ (move Read head R, towards larger addresses)
 ldr r3, r1, #0 ;-- r3 <== *r1 (dereference pointer r1 to read input)
 and r3, r3, r3 ;-- r3 <== r3 (is r3 == 0?)
 brz State_0 ;-- yes: stay in state 0.
 brnzp State_1 ;-- no: go to state 1.

;---- state 1 -----
State_1:
 add r1, r1, x1 ;-- move Read head R (towards larger addresses)
 ldr r3, r1, #0 ;-- r3 <== *r1 (read)
 and r3, r3, r3 ;-- r3 <== r3 (is r3 == 0?)
 brz State_1 ;-- yes: stay in state 1.
 brnzp State_0 ;-- no: go to state 0.

;----------Tape Area----------
Input:
 .FILL x1
 .FILL x0
 .FILL x1
 .FILL x1
 .FILL x0
 .FILL x0
 .FILL x1
 .FILL x1
Output:
 .BLKW #8
 .END

Note: Head only moves R. Head moving R is serial input to FSM.

Separate compilation/assembly

--- Create libraries of pre-translated code, never translate again.

--- Use library routines: use name of function in code.

--- Library pieces are loaded as needed.

--- Each has its own .ORIG, but not exactly relevant as-is:

--- decide order of layout
--- some offsets and all fixed addresses need to be adjusted

;------------- f.asm ----
.EXTERNAL dataLoc
.EXTERNAL start
.ORIG start
...
ptr: .FILL dataLoc
.END

external dataLoc
external start
.ORIG start

0001000011101110
????????????????

;------------- g.asm ----
.EXTERNAL start
.ORIG start
...
dataLoc:
.FILL x0001
.FILL x0002
.END

external start
.ORIG start
dataLoc: offset = 1

1111000010101010
0000000000000001
0000000000000010

0011000000000000
0001000011101110
0011000000000011
1111000010101010
0000000000000001
0000000000000010

HEADER
...
main: x2110

0010101000101010
1010001010101010
0101010101010100
...

What about offsets?
locally relative? no change.
EXTERNAL references?

 f calls g:

 g(); ===> jsr g

How to get correct offset for JSR?

HEADER:
list of references and where.

Linker calculates offsets and edits machine code.

HEADER
...
label g: x4337
...

...
01001xxxxxxxxxxxx
...

Quiz:

After linking/loading:

--- f's code located at x3000.

--- g's code located at x4337.

--- What is the address of the last word of f?

--- f has how many words?

