
See P&P Appendices A and C: LC-3 ISA, TRAPS,
Devices, Interrupts, Exceptions.

1. DATA IS IN REGISTERS (RegFile[i] , IR , PC)

 R2 <== R3 + R1 (register mode)

R2 <== R3 + IR[4:0] (immediate mode)

R2 <== PC + IR[8:0] (immediate mode)
 (assembly computes offset from label)

2. MEMORY ADDRESS IS IN REGISTERS (Regfile[i] , PC , IR)

MAR <== R3 + IR[5:0] (base-offset mode)
R2 <== MDR

MAR <== PC + IR[8:0] (pc-relative mode)
R2 <== MDR (assembly calculates offset from label)

PC <== PC + IR[8:0] (if Condition Code Z=1)
 (assembly calculates offset from label)

PC <== R2

R7 <== PC (assembly calculates offset from label)
PC <== PC + IR[10:0]

R7 <== PC
PC <== R2

PC <== R7 (NB--assembly language shorthand, "ret")

3. MEMORY ADDRESS IS IN MEMORY

MAR <== PC + IR[8:0] (get address where address is)
MAR <== MDR (get address, use it)
R2 <== MDR (get data at address)

Idea: How to use full 16-bit address using only 9 bits in IR.
 ldi r2, myPTR
 ...
 myPTR: .FILL xFE02

Alternative: Move myPTR into a register, use base-offset mode:
 ld r1, myPTR
 ldr r2, r1, 0
 ...
 myPTR: .FILL xFE02

R7 <== PC
MAR <== IR[7:0] (get address where address is)
PC <== MDR (get address, jump)

Idea: How to make full 16-bit jump using only 8 bits in IR.
Also, how to jump to OS trap routine w/o knowing where
trap routine's code is. Allows OS to relocate itself: just
change vector table entry.
 trap x2 ;--- jump to OS service routine x02.
 ...

Alternative: Move VT entry into a register, use jssr:
 ldi r1, VT2
 jssr r1
 ...
 VT2: .FILL x0002

Note: Using what we had above to eliminate ldi, we could
eliminate both LDI and TRAP instructions from the LC3's
ISA: we would have two unused opcodes to play with.

Yet another address-in-memory mechanism.
Just like TRAP, but not an instruction.

Something goes wrong: jump to OS routine (exception)
I/O device sends a signal: jump to OS routine (interrupt)

MAR <== VECT_REG
PC <== MDR

EXCEPTIONS
---- detected during instruction execution.
 Eg., "illegal opcode"
 detected in state-32 (decode):
 VECT_REG <== x0100.

INTERRUPTS
---- generated by device interrupt logic
---- detected in State-18 (fetch)
 Eg., a keyboard event:
 VECT_REG <== x0180

See LC3 Controller States,
13: opcode exception
44: privilege exception
49: interrupt

Not the same as TRAP.
For TRAP, currently executing code,
---- knows a jump is occurring;
---- can SAVE its own STATE beforehand;
---- knows its CC state could change: does not BR immediately after TRAP.

I. Access top item in stack.

LDR R2, R6, #0

MAR <== R6
R2 <== MDR

Stack Pointer (SP) is R6

II. Put new item on top of stack: PUSH

III. Remove item from top of stack: POP

ADD R6, R6, #-1
STR R1, R6, #0

R6 <== R6 - 1
MAR <== R6 + IR[5:0]
MDR <== R1

LDR R3, R6, #0
ADD R6, R6, #1

MAR <== R6 + IR[5:0]
R3 <== MDR
R6 <== R6 - 1

When an exception/interrupt occurs

---- The PSR gets altered immediately, before the next instruction is fetched.

---- The PC gets altered, i.e., a jump.

---- PC could go to R7, but what about nested execeptions/interrupts?

---- The SP (R6) is used to save state, it needs to be saved.

---- Regs can be saved by service routine code.

===> Hardware, not instruction execution, must save state!

37, 41 push PSR
 SP <= SP-1
 MAR <= SP-1
 Mem <= MDR
43, 47, 48 push PC
 MDR <= PC-1
 SP <= SP-1
 MAR <= SP-1
 Mem <= MDR
50, 52, 54 jump
 MAR <= Vector
 MDR <= M
 PC <= MDR

49 INT
 MDR <= PSR
 PSR[10:8] <= IntPriority
 PSR[15] <= 0
 <PSR[15] == 1?> save SP

When exception/interrupt routine COMPLETES

--- RESTORE Regs, done in software

--- RESTORE PC, PSR: the RTI instruction:

 PC <== POP
 PSR <== POP

---- RESTORE SP, see R6 save/restor hardware

8 RTI
 MAR <= SP

36, 38, 39 pop PC
 MDR <= Mem
 PC <= MDR
 SP <= SP+1
 MAR <= SP+1

40, 42, 34 pop PSR
 MDR <= Mem
 PSR <= MDR
 SP <= SP+1
 <PSR[15] == 1?> (restore SP)

LEA R1, #-3

ADD R2, R1, xE

ST R2, #-5

AND R2, R2, 0

ADD R2, R2, #5

STR R2, R1, xE

LDI R3, x-9

(PP, example, Section 5.3.5)

;-- R1 <== &pointer R1 gets (address of pointer variable)

;-- R2 <== &data R2 gets (address of pointer variable + 14) == (address of data variable)

;-- pointer <== &data pointer variable gets (R2, address of data variable)

;-- R2 <== 0 data calculation into R2

;-- R2 <== 5 data calculation into R2

;-- data <== 5 MEM[(R1, address of pointer variable) + 14] gets data, R2

;-- R3 <== data R3 gets data from MEM via de-referencing pointer variable.

