where's the ball?

- Ask yes/no questions.
- Are all questions-answers equally informative?
- Min number of questions?

How many questions must be asked to be certain where the ball is. (cases: avg, worst, best)

- How much do you learn from each yes/no?
- Le that a Good series of questions," In $(1,3)$ "?
arg number of questions needed (assume equally likely boxes)?
$P($ Hit 1st $)=1 / 16$
$\Rightarrow P($ Hit 2nd $)=P($ Hit 2nd \mid Miss 1st $) P($ Miss 1st $)=(1 / 15)(15 / 16)=1 / 16$
$P($ Hit 3rd $)=(1 / 14) * P($ Miss 2nd and 1st $)=(1 / 14)(14 / 15)(15 / 16)=1 / 16$

$$
E(n)=1^{*}(1 / 16)+2^{*}(1 / 16)+\ldots+15^{*}(1 / 16)+15(1 / 16)=(1+2+3+\ldots+15+15) / 16=81 / 2-1 / 16
$$

- Different set of question?

$$
\text { "in }(1, *) \text { or }(2, *)^{\prime} \text {, "in }(1, *)^{\prime}, " \text { in }(2,1) \text { or }(2,2)^{\prime} \ldots
$$

\Rightarrow Each Q reduces space by $1 / 2 \Rightarrow$ Exactly 4 questions
\Rightarrow Most information if each Q-A splits possibilities 50-50
Measure info content of answer?

$$
\begin{aligned}
(\operatorname{prob}(\text { yes })=\operatorname{prob}(\text { no }) \Rightarrow & \log _{2}(\text { Prob }(\text { yes })) \\
& =\log _{2}\left(2^{-1}\right) \\
& =-1 \text { (hmm, make }+?) \\
-\log _{2}(\text { Prob })=\text { info measure } & \Rightarrow 1 \text { bit }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\operatorname{Prob}(\text { yes })=1 / 4 \\
\operatorname{Prob}\left(n_{0}\right)=3 / 4
\end{array}\right\} \text { assume } \\
& \text { yes: } \log \left(2^{-2}\right)=2 \text { bits } \\
& \text { no: } \log (3 / 4) \approx-\log (7) \approx-\log (1 / \sqrt{2})=1 / 2 \text { bit } \\
& Q=\text { "Left of here?" }
\end{aligned}
$$

Arg info of answer?

$$
\begin{aligned}
& =\operatorname{prob}(\text { yes }) \cdot(2 \text { bits })+\operatorname{prob}\left(n_{0}\right) \cdot(1 / 2 \text { bit }) \\
& =1 / 4(2)+3 / 4(1 / 2)=\frac{1}{2}+3 / 8=7 / 8 \text { bit }
\end{aligned}
$$

Extreme: $\quad \operatorname{Prob}($ yes $)=1 / 2^{10} \quad \operatorname{Prob}(n 0)=\left(2^{10}-1\right) / 2^{10} \approx 1$

$$
\text { avg }=\frac{1}{2^{10}}(10 \text { bits })+(1) \underbrace{\log (1)} 0 \text { bits } \Rightarrow 1 / 100 \text { bit }
$$

The max avg. if $P_{i}=\frac{1}{n}$ for n possibilities.

$$
\left(\sum p_{i}=1\right)
$$

How to encode to get 50-50? $\Rightarrow\left(\begin{array}{l}\text { Pair } \\ \text { least } \\ \text { Probable }\end{array}\right)$ equally likely. (a, b, c, d) w/ prob. $(.1, .4, .2, .3)$

$$
\begin{aligned}
& a \text { or } C \\
& \text { dor cord }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shannon Info Theory }=\text { Expected bits }=E\left[\left(-\log \left(p_{r}\right)\right)\right] \\
& \begin{array}{rl}
\begin{array}{c}
\text { ag. content } \\
(\text { entropy, } H)
\end{array} & -\left[\begin{array}{c}
0.1 \log (0.1) \\
a
\end{array}+\begin{array}{c}
0.4 \log (0.4)+0.2 \log (0.2) \\
a
\end{array}+0.3 \log (0.3)\right. \\
c & d \\
& =0.33+0.53+0.52=1.84
\end{array} \\
& \text { How'd we do? bits per message. } \\
& \text { avg. bits }=(0.1) 3+(0.4) 1+(0.2) 3+(0.3) 2 \\
& \text { a b } c \quad d \\
& =0.3+0.4+0.6+0.6=1.9 \text { bits }
\end{aligned}
$$

We are sending more bits than information content, but we are very close.
MIN-Length code $==>$ MAX compression $==>$ most info bits in least number of communicated bits.
Suppose n different "messages" to send, $\mathrm{n}=2^{\wedge} \mathrm{k}$.
Maximum entropy => equally likely: Prob(message-i) $=(1 / n)$ for any messaged.
Expected information per message is,
$\operatorname{Sum}[-(1 / n) \log [1 / n]]=-n(1 / n \log [1 / n])=-1 \log \left[2^{\wedge}-\mathrm{k}\right]=-1(-\mathrm{k})=\mathrm{k}$ bits per message. If we use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?) character, a page of characters, ...

message coded in bits:

$$
" 1 " \rightarrow \text { encode } \rightarrow 1 \rightarrow \text { Chanhe } \rightarrow 0 \rightarrow \text { decode } \rightarrow \text { "o" Error }
$$

2-bit encoding

Code words: 00 and 11 --- "0" and "1"
Code words: 10 and 01 --- 1-bit errors: odd parity codeword indicates error.
Works for k-bit messages w/ 1 parity bit, but only if 2-bit errors very unlikely (never occur?).

1-bit Error Correction w/ 3-bit code words:

$$
\begin{array}{ll}
" 0 "==>~ 000 \\
" 1 "==>~ 111 & \\
001==>~ " 0 " & 011==>~ " 1 " " ~ \\
010==>~ " 0 " & 101==>~ " 1 " \\
100==>~ " 0 " & 110==>~ " 1 "
\end{array}
$$

1-bit Correction, 2-bit Detection
-- odd parity: 1-bit error corrected
-- exactly two 1's: 2-bit error detected
-- otherwise: no error
How many extra bits are needed at minimum? Depends on noise in channel: Shannon Noisey Coding Theorem.

Can you think of a scheme like the paritybit scheme that uses as few bits as possible? (See Reed-Solomon codes, for instance.)

ALU, numbers
$d _i$ is a "digit", a symbol for a value: value("d_i")

Positional notation b is a value, the "base" of the number notation. for numbers

There is a rule to find the value, given the symbols.

$$
\text { value }\left(d_{n} d_{n-1} \cdots d_{1} \delta_{0}^{\prime \prime}\right)=d_{n} \cdot b^{n}+d_{n-1} \cdot b^{n-1}+\cdots \cdot d_{1} \cdot b^{1}+d_{0} \cdot b^{0}
$$

unsigned 3-bit binary binary:
--- digits = \{ "0", "1" $\}$
--- base = 2
$000 \rightarrow$ value $\triangleq 0.2^{2}+0.2^{1}+0.2^{\circ}=0$
$001 \rightarrow$ value $\triangleq 0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=1$
... \quad •••
$111 \rightarrow$ value $\triangleq 1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{\circ}=7$

Let's do some 3-bit arithmetic.
ADD:

$$
A_{2} A_{1} A_{0}+B_{2} B_{1} B_{0}=C_{3} S_{2} S_{1} S_{0}
$$

3-bit
FuLl Adder

Let's try
SUBTRACTION

$$
A_{2} A_{1} A_{0}-B_{2} B_{1} B_{0}=b_{3} S_{2} S_{1} S_{0}
$$

K possible borrow

It's almost this simple in the LC3.
This is a 3-bit version of LC3 (sort of).
Some sort of function f converts 4-bit opcode to 2-bit ALU.ctl. In uCoded control, this function is implemented as $0 / 1$ control bits in ROM.

Unsigned errors

$$
\begin{aligned}
& A+B>7 \Rightarrow C=1, S=(A+B) \bmod 2^{3} \\
& A-B<0 \Rightarrow C=1, S=(A-B) \bmod 2^{3} \\
& C_{3} S_{2} S_{1} S_{0} \Rightarrow\left(\underline{C_{3} \cdot 2^{3}}+S_{2} \cdot 2^{2}+S_{1} \cdot 2^{1}+S_{0} \cdot 2^{0}\right)_{\bmod } 2^{3}=S_{2} \cdot 2^{2}+S_{1} \cdot 2^{1}+S_{0} \cdot 2^{0} \\
& b_{3} S_{2} S_{1} S_{0} \Rightarrow\left(\underline{\left.b_{3}(-1) \cdot 2^{3}+S_{2} \cdot 2^{2}+S_{1} \cdot 2^{1}+S_{0} \cdot 2^{0}\right) \bmod 2^{3}=S_{2} \cdot 2^{2}+S_{1} \cdot 2^{1}+S_{0} \cdot 2^{0}}\right. \\
& c=1 \Rightarrow \text { Overflow }
\end{aligned}
$$

We have 8 possible 3-bit patterns (or symbols).
How else might we assign an interpretation to them?

What else might we want as number values?

3-bit Code		interpretation as value	
	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	5
1	1	1	7

($N B$ - We are representing the values with an alternate representation: base 10
 Is there no end to this madness!?!

Two's-Complement Encoding: We can represent POSTIVE and NEGATIVE
moving $+4 \equiv$ moving - 4
Which value makes sense?
sanity check: 0-1?

hmm, kevin of makes sense.

n-bit Two's $\operatorname{Comp}(x)$

$$
-x \Rightarrow 2^{n}-x
$$

Sanity check $-(-x)$?

Try $n=3$ 2's comp: $2^{n}=2^{3}=8 \quad(-(-3))$

$$
\begin{aligned}
& 2^{3}-\left(2^{3}-3\right) \\
& 2^{3}-(8-3) \\
& 2^{3}-(5) \\
& 8-5 \\
& 3 \\
& \Rightarrow 011+3 \text { cis } 3 \text {-bit 2's comp.) }
\end{aligned}
$$

Converting To
z's Comp?

$$
n-\text { bit }
$$

How do we do this simply, in general?

Notice: The 1st non-zero bit of x gets copied to sum S: borrow = 10 subtract bit $=-1$ sum bit $=1$

Notice: These are the negated bits of x.

To Get $2 \mathrm{sComp}(x)$:
Negate bits, add 1.

Produce - \boldsymbol{x} in 2's Complement (regardless of whether \boldsymbol{x} is + or -):
Negate bits (aka 1's Complement), then add 1.
Simple logic: inverter on each bit, carry in to lowest FA set to 1 .
$==>$ We can use adder for signed subtraction
Let's toy
2's Comp of neg. number (expressed in 2's comp).
$2^{\prime} \operatorname{comp}\left(\widetilde{1 x_{3} x_{2} x_{1} x_{0}}\right)$ a neg. number in 2 's comp.

binary: base =2

$$
\text { digits }=\{0,1\}
$$

$" b_{i} b_{i-1} \cdots b_{0} " \xrightarrow{\text { means }} b_{i} 2^{i}+b_{i-1} 2^{i-1}+\cdots+b_{0} 2^{0}=n$

$$
1002 \xrightarrow{\text { means }}(1) \cdot 2^{2}+(0) \cdot 2^{1}+(0) \cdot 2^{2} \Rightarrow 4_{10}
$$

Octal: base $=8\left(=2^{3}\right)$

$$
" d_{i} d_{i-1} \ldots d_{0} " \xrightarrow{\text { means }} d_{i}\left(2^{3}\right)^{i}+d_{j_{i-1}}\left(2^{2}\right)^{i-1}+\cdots d_{0} \cdot 1
$$

digits $=\{0,1,2,3,4,5,6,7\}$
$3018 \xrightarrow{\text { means }}$

$$
\begin{aligned}
& (3) \cdot\left(2^{3}\right)^{2}+(0) \cdot\left(2^{3}\right)^{1}+(1) \cdot 1 \\
& 3 \cdot 64+0+1 \Rightarrow 193_{10}
\end{aligned}
$$

Octal \leftrightarrow binary

$$
\begin{aligned}
& 501_{8} \longrightarrow\left(101_{2}\right) \cdot\left(2^{3}\right)^{2}+0 \cdot\left(2^{3}\right)^{1}+\left(001_{2}\right)\left(2^{3}\right)^{0} \\
& \rightarrow 1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}\left(2^{3}\right)^{2}+0 \cdot \cdot\left(2^{3}\right)^{1}+1 \cdot 2^{0}\left(2^{3}\right)^{0} \\
& \rightarrow 1 \cdot 2^{2+6}+0 \cdot 2^{1+6}+1 \cdot 2^{6}+0 \cdot 2^{3}+1 \cdot 2^{0} \\
& \rightarrow 1.2^{8}+0.2^{7}+1.2^{6}+0.2^{5}+0.2^{4}+0.2^{3}+0.2^{2}+0.2^{1}+1 \cdot 2^{0} \\
& \rightarrow\left(\frac{1}{1} 0 \quad \frac{0}{5} \quad 0 \quad 0 \quad 0 \quad 0 \quad 1\right)_{2}
\end{aligned}
$$

\Rightarrow Octal digit \longleftrightarrow 3-bit binary representation of digit
Hex
hexadecimal: base $=16=\left(2^{4}\right)$

\Rightarrow Hex digit $\longleftrightarrow 4$-bit binary representation of digit

3-bit, parallel load, left-shift register

Parallel write/load: we =1 and S=0: Q[2:0] <== D[2:0] after next clock tick.
Shift Left: we=1 and S=1:

$$
Q[2: 0]<==\{Q[1: 0], \operatorname{IN}\}
$$

after next tick.
$\frac{\text { 3-bit Doubler }}{D}[$ using 4-bit LSR] (unsigned)

> Parallel $L O A D$
> Q Parallel output

What if y has a 0 bit? Then add 0 instead of shifted x : e.g., $\mathrm{y}=0 \ldots 101$ add 0 , not B .

MULTIPLY:
LSR: partial products, initially x .
S: partial sum, initially 0 .
RSR: initially y.
Z: all Os
RSR's low-bit MUXes Z or LSR to adder.

rewrite
multiplier bt

$=0011101111$
\Rightarrow We shift left (1011) every time, but add either the shifted (1011) or all zeroes, depencling on whether y_{i} is 1 or 0 .

Can we simply multiplier?
-- Get rid of zero register and max.
-- Use y_i to write enable write-enable S register.
Can we speed up multiply? We currently iterate n times to multiply n-bit numbers. Add more hardware? How?

Div by 2
arithmetic, sign extended
R-Shift:

$$
\left(\begin{array}{c}
\text { let's } \\
\text { assume } \\
\text { pos. }
\end{array} \longrightarrow \xrightarrow{\square \vdots}\right)
$$

logical, ϕ padded

$$
\begin{gathered}
\text { Integer Division } \\
= \\
\text { drop remainder } \\
011 \quad \text { R-shift } \rightarrow 001 \\
3 \div 2=1 \\
0111(\text { R-shift })^{2} \rightarrow 0001 \\
7 \div 4=1
\end{gathered}
$$

R-shift(n) = divide-by-2^n

$$
x=k \cdot q+r\left\{\begin{array}{l}
k \text { is divisor } \\
q \text { is quotient }
\end{array}\right.
$$

$$
q=\# k_{s} \text { in } x
$$

But, if divisor is not power of $2 ?$


```
divBySubtraction ( \(\mathrm{x}, \mathrm{k}\) )
\(q=0 ;\)
    while ( \(x>=k\) )
q++
\(\mathrm{x}=\mathrm{x}-\mathrm{k}\)
endWhile
```

divByAddition(x, k) $q=0 ; \quad y=0$
while ($x-y>=k$)
q++
$y=y+k$
endWhile

$$
\text { time }=O(q)
$$

Wed like $\theta(\log (q))=$ bits of of
\Longrightarrow long division

1. Try largest power of 10 , subtract from x.
2. If partial sum is non-negative, save digit.
3. Try next smaller power of 10 , subtract from x or from remainder depending on prior result. etc.

INTEGER (unsigned) DIVISON
$x=k q+r \quad k=$ divisor, $q=q u o t i e n t, r=r e m a i n d e r$ (let's ignore r for now). FIND q.

$$
\begin{aligned}
& x=k q=k q_{n} 2^{n}+k q_{n-1} 2^{n-1} \cdots+k q_{0} 2^{0} \\
& (x-\underbrace{\left.k \cdot 1 \cdot 2^{n}\right)}_{k \text { try } q_{n}=1} \geq 0 \text { then } q_{n}=1 \quad \frac{01000001 \cdots 0}{0,1} q \\
& x \leftarrow k q_{n-1} 2^{n-1}+\cdots+k q_{0} 2^{0} \quad x \leftarrow\left(x-k q_{n} 2^{n}\right)
\end{aligned}
$$

$(x-\underbrace{\left.k \cdot 1 \cdot 2^{n-1}\right)^{\tau_{n y}} q_{n-1}=1}_{k \text { L-shifted }(n-1)} \geq 0$ then $q_{n-1}=1$ |qn|0|0|0|c|0|0|q

Move notNegative RIGHT one bit position after each SUB.

Floating Point
 $\underset{\text { integers, range }}{n-\text { bit }}=2^{n}$
no discratigation error

K-scaled integers: n -bit integer \mathbf{x} represents $\mathrm{k}^{*} \mathbf{x}$, range $=\mathrm{k}^{*} 2^{\wedge} \mathrm{n}$.

discretigation error $\approx k / 2$
near $-k, \%$ error $\Rightarrow \frac{k / 2}{k}=50 \%$
this cant be represented, error $\approx k / 2$
near $-k\left(2^{n}-1\right) \quad \Rightarrow \frac{k / 2}{k\left(2^{n}-1\right)} \cong 1 / 2^{n+1}$
FP, exponential scaling consistent errors?
2^{m} (1.XYZ)
values we can represent

$$
\begin{gathered}
20(1+1 / 2+1 / 4+1 / 2) \\
\Rightarrow \underbrace{1+1 / 2+1 / 4+1 / 8}_{\approx 2} \pm\left(\frac{1}{16}\right)
\end{gathered}
$$

\Rightarrow error $\approx \frac{(1 / 6)}{2}=1 / 32$
The part inside "(...)" is essentially integer.
We cant represent every number.
We choose what type of errors to live with.
The part inside "(...)" is essentially int
The exponent determines the scaling.
$2^{2}(1.111)$

$$
\begin{aligned}
& \underbrace{4+2+1+1 / 2}_{\approx 8} \pm\left(\frac{1}{4}\right) \\
& \text { evan } \approx \frac{(1 / 4)}{8}=\frac{1}{32}
\end{aligned}
$$

===> geometrical-progression scaled integers

FP Format, single Float

$$
\begin{aligned}
& \text { not } \\
& \text { STORED }
\end{aligned}
$$

Represent 0?

$$
\begin{array}{lll}
0 \vdots 0 \cdots 0 & \cdots & 0 \\
+2^{0} \times 1.0 \cdots & 0
\end{array} \Rightarrow 1 ?
$$

If we wed $2 s$-Comp fo E, what's the smallest: 8 -bit, $10000000=-128$ $2^{-128} \times 1.00 \ldots 0 \quad$ that's small. Do we need it?

si 10000000	00	\cdots	00

How many bits do we need for 4 decimal digits of precision?

4 digits

$$
\left.\begin{array}{l}
4 \text { dig. } \times \frac{3 b_{i} t}{\text { digit }}=12 \text { bits } \\
4 \text { dig. } \times \frac{4 \text { bit }}{\text { digit }}=16 \text { bits }
\end{array}\right\} \Rightarrow 12 \leq\left(\begin{array}{c}
\text { Precision } \\
\text { of } \\
f
\end{array}\right) \leq 16
$$

range of E ?
(2 dec. digits)

$$
\left.\begin{array}{l}
2 \text { dig. } x \frac{3 \text { bit }}{\text { dig }}=6 \text { bits } \\
2 \text { dig. } x \frac{\text { bit }}{d i g .}=8 \text { bits }
\end{array}\right\} \quad 6 \leq\left(\begin{array}{c}
\text { bits } \\
\text { of } \\
E
\end{array}\right) \leq 8
$$

Let's check

$$
\begin{aligned}
10^{23} \approx 8^{23}=\left(2^{3}\right)^{23}=2^{(69)} \text { how many bits } & E=69, \text { how } \\
& \text { many wits need ned ed? } \\
& \log (69) \approx 1+\log (64)=7
\end{aligned}
$$

Sorting is most common operation for numerical data
Checking $x>y$ seems hard for floats.
Checking $\mathrm{n}>\mathrm{m}$ for ins: do $(\mathrm{n}-\mathrm{m})$ and check sign bit, if 0 then True.
Can we check $x>y$ using integer hardware?
That is, can we treat x and y as if they were integers, and do integer subtraction?

\Rightarrow Looks like $+25^{5}$-comp
\Rightarrow Looks like - Lir comp
$\Rightarrow A L L(+)$ floats are greater than all $(-)$ floats, as 2 ' soup.

How about the exponent part? $x-y$ as 2'scomp

$$
\left.\left.\begin{array}{l}
B=111 \\
x=+2^{3} \cdot(1.00 \ldots 0) \\
y=+2^{-1} \cdot(1.0 \ldots 0)
\end{array}\right\} \Rightarrow \begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \text { as ins }
$$

y looks like a bigger 2's comp. number than X.
\rightarrow Let's see if we can patch this up.
Recall, our only problem is if 6 och x and y have the same sign.
suppose $\operatorname{sign}(x)=\operatorname{sign}(y)$
(wag. comarison)
let $e_{i}=\operatorname{value}\left(E_{i}\right)$
Note: $e_{1}>e_{2} \Rightarrow 2^{e_{1}}\left(1 . f_{1}\right)>2^{e_{2}}\left(1 . f_{2}\right)$

$x:$	$0 \mid E_{2}$	f_{2}
$y:$	0	E_{1}
		f_{1}

or

$x:$| | $\mid E_{2}$ |
| :--- | :--- |

$y:$| | E_{1} | f_{1} |
| :--- | :--- | :--- |

(Reverse result for neg.) (for sighs \neq result is obvious)
regardless of the fractional parts.
Let's check
Suppose $e_{2}=e_{1}+1$
$1.111 \ldots .1$

So, make E_{1} look bigger than E_{2}

What we have so far
8 -bit exponent (single float)

$$
2^{\prime} \text { 's complement } \Delta\left\{\begin{array}{lll}
01111111 & (2-1=1 \alpha 1) \\
\vdots & (0) \\
00000000 & (0) \\
11111111 & 1110 \\
1111 & \\
10000001 & (-127, \text { not used, reserved for signal) } \\
10000000 & (-128, \text { not used, signals } 0 ?)
\end{array}\right.
$$

Let's
fix Exp
E.G., 3-bit exponents in 2s-complement goal: make all negative exponents look smaller than all positive exponents AS unsigned ins.

* These codes are reserved for special uses. The exponent values -3 and -4 are not allowed.

Rotate 2^{\prime} comp so that +3 becomes largest number available.

How to represent O ?

8-bit FP, ADD

$$
\begin{array}{llll}
2^{3} \times 0.000010110 \\
2^{3} \times 1.0010
\end{array} \underbrace{\text { shift/ align }}_{\text {Truncation? }} \begin{aligned}
& +2^{-2} \times 1.0110 \\
& \text { exponents } \\
& +2^{3} \times 1.0010
\end{aligned}
$$

Convert to 32-bit FP 28

1. Convent to binary

$$
\begin{aligned}
& 28 \\
& \frac{-16}{12} \longrightarrow 1 \cdot 2^{4}
\end{aligned}=100000+1 \cdot 2^{3}=10000+1 \cdot 2^{2}=\frac{100}{11100}
$$

2. Normalize
3. Encode

$$
\frac{4 . \text { Convert } e \text { to } \operatorname{excess}\left(2^{n-1}-1\right)}{\operatorname{excess}\left(2^{8-1}-1=127\right)}
$$

$$
\begin{aligned}
00000100 & =e \\
+0111111 & =127 \\
\hline 10000011 & =E
\end{aligned}
$$

5. Replace e with E
0 10000011 $1100 \ldots$ 0

$$
\underset{\substack{1 \\ 11000 \\ e=4}}{1100} \Rightarrow 2^{4} \times 1.1100
$$

3. Encode

Convert back

1. decode: $+2^{10000011} \times 1.1100 \ldots 0$
2. convert $E \quad \begin{aligned} & -110101011 \\ & \\ & \frac{-011111}{0000100}=4=e\end{aligned}$
$\Rightarrow 2^{4} \times 1.11\binom{$ convert }{ molt. by $2^{c}} \Rightarrow 1.11000=11100$
(convert to dec.) $\Rightarrow 16+8+4=28$

So much for encoding data. We could go on to audio, video, ... But, back to noise and errors.
"message" could be a bit, a string of bits, a character, a page of characters, ...

$$
\text { "message" } \rightarrow \begin{gathered}
\text { Communication } \\
\text { Channel }
\end{gathered} \rightarrow m f s s a g e "
$$

message coded in bits:

$$
" 1 " \rightarrow \text { encode } \rightarrow 1 \rightarrow \text { Chance } \rightarrow 0 \rightarrow \text { decode } \rightarrow \text { "o" Error }
$$

2-bit encoding

$$
\text { "1" } \rightarrow \text { encode } \rightarrow 11 \rightarrow 01 \rightarrow \text { decode } \rightarrow \begin{aligned}
& \text { Channel } \\
& \text { detected }
\end{aligned}
$$

Code words 00 and 11 are good data, 10 and 01 indicate 1-bit errors. Last bit is "parity" bit, odd parity codeword indicates error. Works for k-bit messages w/ 1 parity bit (if 2-bit errors very unlikely).

Parity scheme data parity bit
1-bit Error Correction w/ 3-bit code words:

$$
\begin{array}{rl}
\text { "0" }==>000 \\
" 1 "==>~ 111 & \\
001==>~ " 0 " & 011==>~ " 1 " " \\
010==>~ " 0 " & 101==>~ " 1 " " ~
\end{array}
$$

1-bit Correction, 2-bit Detection
-- odd parity: 1-bit error corrected
-- exactly two 1's: 2-bit error detected
-- otherwise: no error
How many extra bits, at minimum? Depends on noise in channel: Shannon Noisey Coding Theorem. We use 4 bits, 1-bit data.
p-bit parity check

1-bit correction
2-bit error detected
1-bit error, correction 1000 0100

Hamming $(7,4)$ code $\binom{$ Single Error Detection }{ Single Error Correction } 4 data bits
3 parity bits

$$
\left.\begin{array}{rl}
d_{1} d_{2} d_{3} d_{4} & p_{1}
\end{array} p_{2} P_{3}\right)
$$

3 steps to next codeword
1-bit error: can detect and correct 2-bit error: cannot detect

What can we do about 2-bit errors? Add another parity bit.

other neighbor code words
code word $=d_{1} d_{2} d_{3} d_{4} p_{1} p_{2} p_{3} \rho_{4}$
$\Rightarrow 4$ steps min to next code word
1-bit error: detect + correct
2-bit error: detect

Hamming 7,4 code:
Find distances to all other code words.
GREEN-PARITY: Bits[3, 2, 0]
BLUE-PARYT: Bits [3, 1, 0]
RED-PARITY: Bits[2, 1, 0]

$\widetilde{\sim}$
(1-bit flip causes
3 other flips Hamming Distance
$=4$

Hamming distance

$$
=3
$$

Hamming distance $=3$ 解

Hamming distance
$=3$

$H D=4$

$H D=4$

$H D=4$

$H D=4$

$H D=4$

$H D=3$

$H \Delta=7$

ASCII (See back cover of PP)

What to Print Sta	Starting Memory Address	What is displayed (left-to-right)
4-byte number (in hex notation)	0	6D412F32
two 2-byte numbers (in hex)	0	2F32 6D41
four 1-byte numbers (in hex)	0	32 2F 41 6D
one 4-byte string	0	$2 / \mathrm{A}$ m

