

Prob (yes) =
$$\frac{1}{4}$$
 assume
Prob (no) = $\frac{3}{4}$

yes: log (2-2) = 2 bits

yes:
$$\log(2^{-2}) = 2 \text{ bits}$$

no: $\log(3/4) \approx -\log(.7) \approx -\log(1/2) = 2 \text{ bit}$ $Q = \text{Left of here?}''$

ges

Avg into of answer?

= prob(yes). (2 bits) + prob(No). (2 bit)

= 4(2) + 34(4) = 2 + 36 = 76 bit

Extreme:

$$Prob(yes) = \frac{1}{20} Prob(n0) = (2^{10}-1)/210 \approx 1$$

$$avg = \frac{1}{2^{10}} (10 \text{ bits}) + (1) \log(1)$$

Thm max avg. if Pi = in

for n possibilities. (Z pi =1)

How to encode to get 50-50? # (Pair regually likely.

(a,b,c,d) w/ prob. (.1,.4,.2,.3)

We are sending more bits than information content, but we are very close.

MIN-Length code ==> MAX compression ==> most info bits in least number of communicated bits.

Suppose n different "messages" to send, $n = 2^k$.

Maximum entropy => equally likely: Prob(message-i) = (1/n) for any message-i.

Expected information per message is,

Sum[$-(1/n) \log[1/n]$] = $-n(1/n \log[1/n])$ = $-1 \log[2^k]$ = -1(-k) = k bits per message. If we use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?)

Error Detection/Correction

"message" could be a bit, a string of bits, a character, a page of characters, ...

message coded in bits:

Code words: 00 and 11 --- "0" and "1"

Code words: 10 and 01 --- 1-bit errors: odd parity codeword indicates error.

Works for k-bit messages w/ 1 parity bit, but only if 2-bit errors very unlikely (never occur?).

1-bit Error Correction w/ 3-bit code words:

1-bit Correction, 2-bit Detection

-- odd parity: 1-bit error corrected

-- exactly two 1's: 2-bit error detected

-- otherwise: no error

How many extra bits are needed at minimum? Depends on noise in channel: Shannon Noisey Coding Theorem.

Can you think of a scheme like the paritybit scheme that uses as few bits as possible? (See Reed-Solomon codes, for instance.)

More bits, higher error probability.

ALU, numbers

Positional notation for numbers

d i is a "digit", a symbol for a value: value("d_i")

b is a value, the "base" of the number notation.

There is a rule to find the value, given the symbols.

$$value(\ddot{d}_n d_{n-1} \cdots d_1 d_n'') = d_n \cdot b^n + d_n \cdot b^{n-1} + \cdots + d_1 \cdot b^1 + d_n \cdot b^n$$

unsigned 3-bit binary binary:

000
$$\rightarrow$$
 value $\triangleq 0.2^2 + 0.2' + 0.2'' = 0$
001 \rightarrow value $\triangleq 0.2^2 + 0.2' + 1.2'' = 1$
...

111 \rightarrow value $\triangleq 1.2^2 + 1.2' + 1.2'' = 7$

oops, more symbols?

Let's do some 3-bit arithmetic. ADD:

$$A_2A_1A_0 + B_2B_1B_0 = C_3S_2S_1S_0$$

Let's try **SUBTRACTION**

$$A_2A_1A_0 - B_2B_1B_0 = b_3 S_2S_1S_0$$

possible borrow

It's almost this simple in the LC3.

This is a 3-bit version of LC3 (sort of).

Some sort of function f converts 4-bit opcode to 2-bit ALU.ctl. In uCoded control, this function is implemented as 0/1 control bits in ROM.

c = carry/borrow output

$$A+B > 7 \Rightarrow c = 1$$
, $S = (A+B) \mod 2^3$
 $A-B < 0 \Rightarrow c = 1$, $S = (A-B) \mod 2^3$

$$C_3 S_1 S_1 S_0 \Rightarrow \left(\underbrace{C_3 \cdot 2^3}_{2} + S_2 \cdot 2^2 + S_1 \cdot 2^1 + S_2 \cdot 2^0 \right)_{\text{mod } 2^3} = S_2 \cdot 2^2 + S_1 \cdot 2^1 + S_2 \cdot 2^0$$

$$b_{3}S_{2}S_{3}S_{6} \Rightarrow \left(b_{3}(-1)\cdot 2^{3} + S_{2}\cdot 2^{2} + S_{1}\cdot 2^{1} + S_{2}\cdot 2^{6}\right) \mod 2^{3} = S_{2}\cdot 2^{2} + S_{1}\cdot 2^{1} + S_{2}\cdot 2^{6}$$

We have 8 possible 3-bit patterns (or symbols).

How else might we assign an interpretation to them?

What else might we want as number values?

(NB-We are representing the values with) an alternate representation: base 10 ls there no end to this madness!?! Two's-Complement Encoding:
We can represent POSTIVE and NEGATIVE

CODE	Value
+1 0 1 1	+3
· · · · · · · · · · · · · · · · · · ·	+2
> 0 0 1	+ 1
4 6000	0
1 1 1	- 1
1 1 0	- 2
1 0 1	- 3
1 0 0	- 4

moving $+4 \equiv \text{moving } -4$ Which value makes sense? sanity check: 0 - 1?

hmm, kind of makes sense.

-k can be moving:

OR

OR

OR

$$-3 \implies 9 \quad 3 \quad steps$$

$$\implies 9 \quad 2^3 - 3 = 5 \quad steps$$

Sanity check
$$-(-x)$$
?

$$-\chi \Rightarrow (2^n - \chi)$$

$$-(-x) \implies 2^n - (2^n - x)$$

$$-(-x) = x$$
 in 2 's comp.

Try
$$n=3$$
 2's comp: $2^{n}=2^{3}=8$ (-(-3))
 $2^{3}-(2^{3}-3)$
 $2^{3}-(8-3)$
 $2^{3}-(5)$
 $8-5$

→ 011 +3 (in 3-bit 2's comp.)

Note: columns with borrows give a bit flip.

$$\frac{1}{-\chi_{k}} = 0 \quad 1 \quad 1 \quad \dots \quad 1 \quad 0 \quad 0 \quad \dots \quad 0 \\
-\chi_{k} = -\chi_{n-1} \chi_{n-2} \cdots \chi_{n-j} \quad 1 \quad 0 \quad 0 \dots \quad 0$$

Notice: The 1st non-zero bit of *x* gets copied to sum S: borrow = 10 subtract bit = -1

$$(2^{n}-x) = \overline{\chi}_{n-1} \overline{\chi}_{n-2} \cdots \overline{\chi}_{n-j} 1 0 0 \cdots 0$$

$$(2^{n}-x)-1 = \overline{\chi}_{n-1} \overline{\chi}_{n-2} \cdots \overline{\chi}_{n-j} 0 1 1 \cdots 1$$

Notice: These are the negated bits of x.

$$\chi = \chi_{n-1} \chi_{n-2} \cdots \chi_{n-1} \cdots \chi_{2} \chi_{1} \chi_{0}$$

To Get 2sComp(x):

Negate bits, add 1.

Produce - x in 2's Complement (regardless of whether x is + or -):

Negate bits (aka 1's Complement), then add 1.

Simple logic: inverter on each bit, carry in to lowest FA set to 1.

==> We can use adder for signed subtraction

$$\frac{1002}{\text{digits}} = \frac{10002}{\text{figits}} =$$

Hex digit >> 4-6:+ binary representation of digit

3-bit, parallel load, left-shift register

Parallel write/load: we=1 and S=0: Q[2:0] <== D[2:0]

after next clock tick.

Shift Left: we=1 and S=1:

Parallel LOAD

 $Q[2:0] <== { Q[1:0], IN }$

after next tick.

Parallel Output

What about signed numbers?

Convert to unsigned.

Multiply.

Convert back.

What if y has a 0 bit? Then add 0 instead of shifted x: e.g., y = 0...101 add 0, not B.

LSR: partial products, initially x. partial sum, initially 0. RSR: initially y. Z: all 0s RSR's low-bit MUXes Z or LSR to adder. LSR $\chi_{n} \chi_{n-1} \cdots \chi_{s}$ RSR $+ \frac{\chi_{n} \chi_{n-1} \dots \chi_{1} \chi_{0} 0}{S_{n+2}^{"} S_{n+1}^{"} \dots S_{3}^{"} S_{2}^{"} S_{1}^{"} S_{0}^{"}} + \frac{(c)}{S_{0}^{"}}$ 2(n+1) multiplier bit 1011 \times 0 10 1

MULTIPLY:

but add either the shifted (1011) or all zeroes, depending on whether Y is 1 or 0.

Can we simply multiplier?

- -- Get rid of zero register and mux.
- -- Use y i to write enable write-enable S register.

Can we speed up multiply? We currently iterate n times to multiply n-bit numbers. Add more hardware? How?

Ok, for division by a power of 2.

Div by 2

R-Shift:

Integer Division drop remainder

$$011 \quad R-shiff \rightarrow 001$$

$$3 \quad \div 2 = 1$$

$$0111 \quad (R-shift)^2 \rightarrow 0001$$

$$7 \quad \div 4 = 1$$

R-shift(n) = divide-by-2ⁿ

But, if divisor is not power of 2?

$$x = k \cdot g + r$$

$$\begin{cases} k \text{ is divisor} \\ g \text{ is quotient} \end{cases}$$

$$g = \# k \text{ in } x$$

$$k \mid k \mid k \mid k \mid r$$

$$\label{eq:divBySubtraction} \begin{split} \text{divBySubtraction}(\ x,\ k\) \\ \text{q} &= 0; \\ \text{while}(\ x >= k\) \\ \text{q++} \\ \text{x} &= x - k \\ \text{endWhile} \end{split}$$

time =
$$O(q)$$

We'd like $O(\log(q)) = \# \text{ bits of } q$ The long division $k = \frac{d_n 00}{x}$

- 1. Try largest power of 10, subtract from x.
- 2. If partial sum is non-negative, save digit.
- 3. Try next smaller power of 10, subtract from x or from remainder depending on prior result. etc.

$$\begin{array}{c}
\frac{d_{n}00\cdots0}{\chi} \\
-\frac{k\cdot d_{n}00\cdots0}{\chi'}
\end{array}$$
x or

INTEGER (unsigned) DIVISON

k = divisor, q = quotient, r = remainder (let's ignore r for now). FIND q.

Move notNegative RIGHT one bit position after each SUB.

(write is to lowest bit position)

Floating Point /

K-scaled integers: n-bit integer **x** represents k^*x , range = k^*2^n .

this can't be represented, error = 1/2

Near · k, % error => 1/2 = 50%

Near • k(2"-1) $\Rightarrow \frac{k/2}{b(2^n)} \cong \frac{1}{2^{n+1}}$

FP exponential scaling

$$\sqrt{2^2(1.111)}$$

We can't represent every number. We choose what type of errors to live with.

 \Rightarrow error $\approx \frac{(1/4)}{2} = \frac{1}{32}$

The part inside "(...)" is essentially integer. The exponent determines the scaling.

===> geometrical-progression scaled integers

ever $\approx \frac{(\%)}{2} = \frac{1}{32}$

Can we get more consistent errors?

FP Format, single Float

32-bit:

value
$$(x) = S 2 \times 1. f$$

2's comp fn E?

Use

$$+2^{2} \times 1.11010...0$$

Represent 0?

If we used 2s-Comp for E, what's the smallest: 8-bit, 1000 0000 = -128

that's small. Do we need it?

Well, maybe we can live with that? We have to stop somewhere.

How many bits do we need for 4 decimal digits of precision?

2 digits

a nice number

3 bits per digit
$$(2^3 \rightarrow 0...)$$

4 digits

2 digits

3 bits per digit $(2^4 \rightarrow 0...)$

3 bits per digit
$$(2^3 \rightarrow 0..7)$$
 ≈ 3.5 bits 4 bits per digit $(2^4 \rightarrow 0..15)$ per digit

$$4 \text{ dig.} \times \frac{36\text{ jt}}{\text{ digit}} = 12 \text{ bits}$$

$$4 \text{ dig.} \times \frac{36\text{ jt}}{\text{ digit}} = 16 \text{ bits}$$

$$\Rightarrow |2 \leq \binom{\text{Precision}}{\text{of}} \leq 16$$
(23 bits are enough)

Let's check

$$E = 69$$
, how
many bits needed?
 $Log(69) \approx 1 + Log(64) = 7$

Sorting is most common operation for numerical data

Checking x > y seems hard for floats.

Checking n > m for ints: do (n - m) and check sign bit, if 0 then True.

Can we check x > y using integer hardware?

That is, can we treat x and y as if they were integers, and do integer subtraction?

Let's fix Exp

E.G., 3-bit exponents in 2s-complement

goal: make all negative exponents look smaller than all positive exponents AS unsigned ints.

value	e in 2s-comp		E in excess-3
+3	011	+011 ==>	110
+2	010	+011 ==>	101
+1	001	+011 ==>	100
0	000	+011 ==>	011
-1	111	+011 ==>	010
-2	110	+011 ==>	001
-3	101	+011 ==>	000 *
-4	100	+011 ==>	111 *

* These codes are reserved for special uses.
The exponent values -3 and -4 are not allowed.

Rotate 2'comp so that +3 becomes largest number evailable.

How to represent 0?

8-bit FP, MULT

Convert to 32-bit FP/28

1. Convert to binary

11100.
$$\Rightarrow$$
 24 x 1.1100

3. Encode

4. Convert e to excess
$$(2^{n-1}-1)$$
 excess $(2^{8-1}-1) = 127$

$$\begin{array}{cccc}
00000|00 & = e \\
+ 011|11|1 & = 127 \\
\hline
|00000|1 & = E
\end{array}$$

5. Replace e with E

Convert back

2. convert E
$$\frac{-1000011}{0000100} = 4 = e$$

$$2^{4} \times |.|| \quad \left(\begin{array}{c} \text{convert } f \\ \text{mult. by } 2^{e} \end{array}\right) \Rightarrow |.||00 \\ \times 2^{4} \\ \text{(convert to dec.)} \Rightarrow |6+8+4=28$$

So much for encoding data. We could go on to audio, video, ... But, back to noise and errors.

Error Detection/Correction

"message" could be a bit, a string of bits, a character, a page of characters, ...

Code words 00 and 11 are good data, 10 and 01 indicate 1-bit errors. Last bit is "parity" bit, odd parity codeword indicates error. Works for k-bit messages w/ 1 parity bit (if 2-bit errors very unlikely).

Parity scheme

Jata Parity bit

1-bit Error Correction w/ 3-bit code words:

P-bit parity check

- 1-bit Correction, 2-bit Detection
- -- odd parity: 1-bit error corrected
- -- exactly two 1's: 2-bit error detected
- -- otherwise: no error

How many extra bits, at minimum? Depends on noise in channel: Shannon Noisey Coding Theorem.

We use 4 bits, 1-bit data.

Hamming (7,4)

7 bits per code word

4 data bits

3 parity bits

Code / Single Error Detection / Single Error Correction)

d, d2 d3 d4 P, P2 P3

$$P_1 = parity(d_1 d_2 d_4)$$

$$P_2 = parity(d_1 d_3 d_4)$$

$$P_3 = parity(d_2 d_3 d_4)$$

1-bit error: can detect and correct

2-bit error: cannot detect

1011 + 010 001 001 100 other neighbor code words

What can we do about 2-bit errors?

Add another parity bit.

4 steps min to next code word

1-bit error: detect + correct

2-bit error: detect

HD = 7

ASCII (See b	ack cover of	PP)					Who's on f	1,215
HEX CODE 00 01	MEANING NUL SOH	Printable? no no	? }	data Communications Control signals		6 D	41 2F 32	
20	space	yes	J	Control signals		.1.	\downarrow \downarrow \downarrow	
30 31	"0" "1"	yes yes				m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
41 42	 "A" "B"	yes yes		n + 11	1			
 61	 "a"	yes		Byte Adada	Jan -	1 l		print order
62	"b" 	yes		addr	memory) bits	,	$\overline{}$
7A (other stuff	"z" , non-standa	yes rd)		O	0011	0010	low bit	"2")
				1	0000	[[]]	→ 2F ("	•
				2	0100	0001	→>41 (";	
				3	• •	1101	→6D("1	m ")
				high bit	J			

What to Print	Starting Memory Address	What is displayed (left-to-right)
4-byte number (in hex notat	ion) 0	6D412F32
two 2-byte numbers (in hex)	0	2F32 6D41
four 1-byte numbers (in hex) 0	32 2F 41 6D
one 4-byte string	0	2 / A m

(see "od" in unix)