

STATE ELements

that was easy, but Hey! no inputs!
 two states! hooray!

The state is latched (captured) when $-S=-R=1$. NAND-NAND latch

$S=$ set

Can we use this for a FSM state element?

IIIIII
Oh No!

any input change \rightarrow to output \rightarrow state change!

CLockING, part 1: Gating D-Latch

Enable $=0$, input is ignored
Enable $=1$, input allowed through: $R=R^{\prime}, S=S^{\prime}$
S-R latch w/ Enable conceptrantly

2-phase docking, D-FF

$\underbrace{}_{\text {Transparent during this time, enough time to cause state change? }}$ make sure system never has an open feedback path.

Q_{1} changes, L_{1} Transparent $\quad Q_{2}$ changes, L_{2} transparent.
$D-F F$

OR

Separate signals for each latch's enable in FlipFlop. On breadboard we connect PHASE- 1 to one data switch, PHASE-2 to another.

D-FF, Pos. edge triggered w/ enable

We often want to control whether or not the FF will be written into when the clock pulse arrives: add an "enable" input. When enable is 0 , the current state is written back into the FF. Otherwise, D is written.

If there is no feedback path from Q to D, we do not need a flip-flop, we can use a write-enable latch instead. Datapaths sometimes can use latches.

Serial Parity, final implementation

This is a FSM with non-trivial control state and next-state function, but a trivial datapath.

Flipflop can be 2-phase clocked, in which case the "sys_clock" signal consists of two wires.

$$
\begin{array}{l|ll}
\left.\frac{\text { STATE ENCOING }}{\text { EVEN }} \right\rvert\, Q=0 \\
\text { ODD } & Q=1
\end{array} \quad \begin{aligned}
& \text { 位t-state } \\
& D=\operatorname{IN} \oplus Q
\end{aligned} \quad \text { OUT }=Q
$$

FSM implementation, example $\mid A D D-2,2$ serial inputs \mid reg.

Full Adder

Add-2, final implementation

This FSM has a non-trivial datapath consisting of datapath "state" registers and data processing "next-state" functions. But the control FSM is trivial.

FSM, Add-1 implementation

$$
\begin{aligned}
& C_{2} C_{1} C_{0} \\
& X=x_{2} X_{1} x_{0} \\
&+Y=y_{2} Y_{1} Y_{0} \\
& \hline s=s_{2} s_{1} s_{0}
\end{aligned}
$$

And Now, a FSM with a non-trivial controller and non-trivial datapath.

means $x=1$,
all others $=0$ When is

Function outputs are not valid until all inputs are available (valid).

X does not become valid until clock tick that ends state get.

Output is only valid every 3rd clock period.

Simplified FSM and datapath
If we can depend on the input to be stable, we can eliminate the Y data register: just use the data input when it is valid for Y . Eliminates one control state.

FSM controller

Sum function

Carry function, w/ Karnaugh map + algebra

$$
\begin{aligned}
C \cdot D & =\mathbb{N} \cdot C \cdot Q+\mathbb{N} \cdot X \cdot Q+X \cdot Q \cdot C \cdot Q \\
& =\mathbb{N} \cdot(C \cdot Q+X \cdot Q)+X \cdot Q \cdot C \cdot Q
\end{aligned}
$$

[eliminates 3-inpt $O R$]
$\Rightarrow\binom{$ Convert to NAND/NOR }{$\frac{Q}{Q}$ is available. }
Full Adder (FA)

SMALLER FA circuit?
Can you find terms shared between MASORITY and SUM?

Probrammable Logic Array consists of two parts:

PLA, part 1.
A decoder, which can be thought of in two ways:
a) a device that activates exactly on output depending on the code sent in.
b) a device that simultaneously generates all minterms for its input.

PLA, Part 2.
A means of OR'ing minterms to produce function outputs.
Several OR can share the same minterms: we can economically produce multiple functions at once.

The connections to minterm lines can be "blown" to disconnect them: this selects which minterms are included in the function.

FSM in ROM (n-bit state, i-bit input, k-bit FSM output)
Every possible FSM can be built as a ROM.
(STATE, INPUT) is ROM address
n bits $+i$ bits $===>2^{\wedge}(n+i)$ ROM locations
ROM is very large since there is a word for every possible \{state, input\} combination.
(NEXT-STATE, FSM-OUTPUT) is ROM output n bits $+k$ bits $====>(n+k)$ bits per location
$===>2^{\wedge}(n+i)$ location by $(n+k)$-bit word ROM
ANY FSM (Mealy or Moore) can be built as a ROM
NOTE: A Moore machine's output depends only on state ===> use n-bit addresses, one ROM location per state.

BUT, next-state depends on current-state+input. Encode part of next-state function in ROM word as NS-CODE, and use external logic to calculate next-state function: next-state $=f($ INPUT, NS-CODE $)$. This is what is done in the LC3's micro-coded controller.

We can enumerate all ROMs (and consequently all TMs/digital-computers):

Concatenate ROM content from all words:
address content
00
00
$01 \quad 11$
$10 \quad 11$
1100

$$
\text { ==> } 01111000
$$

List all $\mathrm{n}=\mathrm{i}=\mathrm{k}=1$ machines:
FSM-0, FSM-1, ..., FSM-256
List all $\mathrm{n}=\mathrm{i}=\mathrm{k}=2$ machines:
FSM-257, FSM-258, ...
and so on.

