
FSM has input/output, but
from/to where?

(1) Other FSMs in same
machine

(2) Feedback loops

We like to separate state into two "types", control and data state.
Eg., some state elements are for "control" state, and some are for
"data" state.

In any control state, data state can be in either of two states: 0 or 1.
Data states could be much larger: using just one 32-bit data register
gives us 4 G data states. With this 2-state control, total machine
state would be 8 G states.

Suppose a FSM with 1-bit control-
state element and 1-bit data-state
element. Total is 2-bits of state; 4-
state machine. State diagram
quickly becomes a mess. What if
2-bit data-state? 8-state total FSM,
but only 2 control states.

The state is latched (captured) when -S = -R = 1.
NAND-NAND latch

Can we use this
for a FSM state
element?

We often want to control whether or not the FF will be written into when the
clock pulse arrives: add an "enable" input. When enable is 0, the current state
is written back into the FF. Otherwise, D is written.

2-Phase Clocking

Separate signals for each latch's
enable in FlipFlop. On breadboard
we connect PHASE-1 to one data
switch, PHASE-2 to another.

If there is no feedback path from Q to D, we do not
need a flip-flop, we can use a write-enable latch
instead. Datapaths sometimes can use latches.

This is a FSM with non-trivial control state
and next-state function, but a trivial datapath.

Flipflop can be 2-phase clocked, in which
case the "sys_clock" signal consists of two
wires.

state encoding: S0 = 1

next-state function: Q+ = Q

output function: out = Q

This FSM has a non-trivial datapath consisting
of datapath "state" registers and data
processing "next-state" functions. But the
control FSM is trivial.

Function outputs are not valid until all inputs are
available (valid).

X does not become valid until clock tick that ends
state getX.

Output is only valid every 3rd clock period.

And Now, a FSM with a non-trivial controller
and non-trivial datapath.

If we can depend on the input to be stable, we
can eliminate the Y data register: just use the
data input when it is valid for Y. Eliminates one
control state.

Probrammable Logic Array
consists of two parts:

PLA, part 1.

A decoder, which can be
thought of in two ways:

a) a device that activates
exactly on output depending
on the code sent in.

b) a device that
simultaneously generates
all minterms for its input.

PLA, Part 2.
A means of OR'ing minterms to produce function outputs.

Several ORs can share the same minterms: we can economically produce multiple functions at
once.

The connections to minterm lines can be "blown" to disconnect them: this selects which
minterms are included in the function.

FSM in ROM (n-bit state, i-bit input, k-bit FSM output)

 (STATE, INPUT) is ROM address
 n bits + i bits ===> 2^(n+i) ROM locations

 (NEXT-STATE, FSM-OUTPUT) is ROM output
 n bits + k bits ====> (n+k) bits per location

===> 2^(n+i) location by (n+k)-bit word ROM

ANY FSM (Mealy or Moore) can be built as a ROM

NOTE: A Moore machine's output depends only on state
===> use n-bit addresses, one ROM location per state.

BUT, next-state depends on current-state+input. Encode
part of next-state function in ROM word as NS-CODE,
and use external logic to calculate next-state function:
next-state = f(INPUT, NS-CODE). This is what is done
in the LC3's micro-coded controller.

Every possible FSM can be built as a ROM.

ROM is very large since there is a word for
every possible {state, input} combination.

We can enumerate all ROMs (and
consequently all TMs/digital-computers):

Concatenate ROM content from all words:

address content
 00 00
 01 11
 10 11
 11 00

 ==> 01111000

List all n = i = k = 1 machines:
FSM-0, FSM-1, ..., FSM-256

List all n = i = k = 2 machines:
FSM-257, FSM-258, ...

and so on.

at clock tick:

-- { current state, current input } captured
-- output changes to match captured state/input

-- Every state row has same output
 ===> Moore Machine

-- Rows for state S have differing outputs
 ===> Mealy Machine.

