

FSM has input/output, but from/to where?

- (1) Other FSMs in same machine
- (2) Feedback loops

We like to separate state into two "types", control and data state. Eg., some state elements are for "control" state, and some are for "data" state.

control state/

D

Total machine state

Suppose a FSM with 1-bit controlstate element and 1-bit data-state element. Total is 2-bits of state; 4state machine. State diagram quickly becomes a mess. What if 2-bit data-state? 8-state total FSM, but only 2 control states.

Splitting state:

"datapath state"

In any control state, data state can be in either of two states: 0 or 1. Data states could be much larger: using just one 32-bit data register gives us 4 G data states. With this 2-state control, total machine state would be 8 G states.

Serial parity but machine

STATE	EN CO D	n N G
EVEN	Q =	D
000	Q =	1
	•	

O DI	or 	=	\
'	OR		1
EVEN	Q.=1	6'= a	
000	@,=0	Q.= (- 1
	, , ,	• • •	

Next-State function

Next-state circuit

$\frac{Q \mid 0 \lor T}{Q \mid Q} \quad 0 \lor T = Q$

Function

$$D = \overline{Q} \cdot IN + Q \cdot \overline{IN}$$

OUTPUT CITCUIT

That was easy, but hey! No imputs! co

Supposa A.out = 0 B. out A. out = 0Stable!

A.out = 1 → B. out = 0 → A. out =1 STable

Q = 1 Q = 0 states! hooray!

The state is latched (captured) when -S = -R = 1. NAND-NAND latch

we use inputs? this is still a NOT

SR	STATE
1 1	1NV-INV LOOP, 2 possible states: Q=0 or Q=1 1-INV Loop, 1 possible state: Q=1
0 1	1-INV Loop, 1 possible state: 0=1
1 1	INV-INV Loop, latched state Q=1
10	INV-1 Loop, one possible state: Q=0
1 1	INV-INV Loop, Latched state Q=0

Yay! State element w/ input!

Can we use this for a FSM state element?

Oh No!

-> to output -> state change! any input change -

We often want to control whether or not the FF will be written into when the clock pulse arrives: add an "enable" input. When enable is 0, the current state is written back into the FF. Otherwise, D is written.

If there is no feedback path from Q to D, we do not need a flip-flop, we can use a write-enable latch instead. Datapaths sometimes can use latches.

Serial Parity, final implementation

This is a FSM with non-trivial control state and next-state function, but a trivial datapath.

Flipflop can be 2-phase clocked, in which case the "sys_clock" signal consists of two wires.

STATE ENCODING			
EVEN	6 = 0		
000	Q = 1		

$$\frac{\text{Mext-state}}{D = IN \oplus Q} = \frac{\text{Output}}{\text{Out} = Q}$$

FSM implementation, example | ADD-2, 2 serial imputs \reg.

state encoding: S0 = 1

next-state function: Q+=Q

output function: out = Q

Datapath functions, MUX

FSM, Add-1 implementation

$$X = X_2 X_1 X_0$$

$$+ Y = Y_2 Y_1 Y_0$$

$$S = S_2 S_1 S_0$$

And Now, a FSM with a non-trivial controller and non-trivial datapath.

Output is only valid every 3rd clock period.

X does not become valid until clock tick that ends

available (valid).

state getX.

Simplified FSM and datapath

If we can depend on the input to be stable, we can eliminate the Y data register: just use the data input when it is valid for Y. Eliminates one control state.

Carry Function, w/ Karnaugh map + algebra

1 N

$$C.D = IN \cdot C.Q + IN \cdot X.Q + X.Q \cdot C.Q$$

$$= IN \cdot (C.Q + X.Q) + X.Q \cdot C.Q$$
[eliminater 3-input or]

Convert to NAND/NOR)

Q is evailable.

Full Adder (FA)

SMALLER FA circuit?

Can you find terms shared between MASORITY and SUM?

PLA, Part 2. A means of OR'ing minterms to produce function outputs.

Several ORs can share the same minterms: we can economically produce multiple functions at once.

The connections to minterm lines can be "blown" to disconnect them: this selects which minterms are included in the function.

FSM in ROM (n-bit state, i-bit input, k-bit FSM output)

(STATE, INPUT) is ROM address n bits + i bits ===> 2^(n+i) ROM locations

(NEXT-STATE, FSM-OUTPUT) is ROM output n bits + k bits ====> (n+k) bits per location

 $===> 2^{(n+i)}$ location by (n+k)-bit word ROM

ANY FSM (Mealy or Moore) can be built as a ROM

NOTE: A Moore machine's output depends only on state ===> use n-bit addresses, one ROM location per state.

BUT, next-state depends on current-state+input. Encode part of next-state function in ROM word as NS-CODE, and use external logic to calculate next-state function: next-state = f(INPUT, NS-CODE). This is what is done in the LC3's micro-coded controller.

Every possible FSM can be built as a ROM.

ROM is very large since there is a word for every possible {state, input} combination.

Encode DDE,	addre	55		data Word	(ROW)
ction: s done	STATE	INP JT	next-sta	te ou	Tput
	Ó	\circ	0		0
	Ö	1	1		
		Ö			1
	1	1	0		0
			ROM		
INPUT		7	State output	address	
	,	V,	0 0	5 00	TATE 0
AM	ir lo	0	1	10 5	4
		next	0 0	j 17 }s	tate 1
		STATE	→ , ,	Cotate in	iput
			output	21001	•

We can enumerate all ROMs (and consequently all TMs/digital-computers):

Concatenate ROM content from all words:

address	content
00	00
01	11
10	11
11	00

==> 01111000

List all n = i = k = 1 machines: FSM-0, FSM-1, ..., FSM-256

List all n = i = k = 2 machines: FSM-257, FSM-258, ...

and so on.

at clock tick:

- -- { current state, current input } captured
- -- output changes to match captured state/input
- -- Every state row has same output ===> Moore Machine
- -- Rows for state S have differing outputs ===> Mealy Machine.