Can we build any 2-input, single-1-output function using what we already know?
We can build (NOT, NOR, NAND) from CMOS gates, and combine them to build AND and OR.
Can we build arbitrary single-1-output functions from just these?

Minterms

$A B$		
0	0	
0	1	0
10	0	
11	1	$\rightarrow A \cdot B \equiv m_{3}$

We now have all possible simple 2 input functions, ie., our minterms $\mathrm{m} 0, \mathrm{~m} 1, \mathrm{~m} 2$, and mb.

And we know how to build each from the 2 -input gates we already have and NOT.

So, we can now build ANY 2-input function! Just OR these as needed.

Can we do the same for 3 -input functions?

We CAN build all 2-input functions.
BUT, WHAT is a 3 -input function?
CAN we build from 2-input functions?
AND (X , Y, Z)
is that the same as,
AND (AND (X, Y), Z) ???

A	B	$A \cdot B$
σ	0	0
0	1	0
1	0	0
1	1	1

$(A \cdot B)$	C	$(A \cdot B) \cdot C$
σ	0	0
σ	1	0
1	0	0
1	1	1

B	C	$B \cdot C$
0	0	0
0	1	0
i	0	0
i	1	1

A	B	C	$(A \cdot B) \cdot C$	
0	0	0	$?$	
0	0	1	$?$	
0	1	0	$?$	
0	1	1	$?$	
1	0	0	$?$	
1	0	1	$?$	
1	1	0	$?$	
1	1	1	$?$	

Basic Algebraic Properties equivalent functions
a logical constant = TRUE for all inputs.

1. $P=P$

$$
O \cdot P=0
$$

$$
P \cdot P=P
$$

$$
P \cdot \bar{P}=0
$$

$$
A \cdot B=B \cdot A
$$

$$
(A B) C=A(B C)
$$

Handy tricks for (1) proving algebraic properties or doing algebraic operations, and (2) converting logic circuits from one type of logic gates to another. (Aside: can you prove Duality?)

$$
\begin{aligned}
& \text { Dellorgan's Laws } \\
& \overrightarrow{A B}=\vec{A}+\bar{B} \\
& \begin{array}{ll|l|lll|l}
A & B & A \cdot B & \overline{A B} \\
\hline 0 & 0 & 0 & 1 & \bar{A} & \bar{B} & \bar{A}+\bar{B} \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
10 & 0 & 1 & 0 & 1 & 1 \\
11 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& A \longrightarrow 0=\begin{array}{l}
A-Q \\
B \longrightarrow Q
\end{array} \\
& { }_{B}^{A}=0-{ }^{A}-0 . \quad \overline{A+B}=\vec{A} \cdot \vec{B} \quad D V A L \\
& \begin{array}{l}
\text { Duality } \\
\left.\begin{array}{c}
0 \\
\rightarrow \rightarrow 0 \\
1 \\
0 \\
0
\end{array}\right\} \begin{array}{l}
\text { starting with } \\
\text { an idexity, } \\
\text { gives an } \\
\text { identity }
\end{array}
\end{array} \\
& \begin{array}{l}
1 \cdot P=P \\
0+P=P \text { duality }
\end{array} \\
& \begin{array}{l}
0 \cdot P=0 \\
1+P=1
\end{array} \quad \text { duality } \\
& \begin{array}{l}
(A+B) C=A \cdot C+B \cdot C \\
(A \cdot B)+C=(A+C) \cdot(B+C)
\end{array} \downarrow^{d_{a} \mid}
\end{aligned}
$$

Build any k-input function? Use k-ary minterm expansion.
Build k-ary minterms from 2-input gates we already have?

$$
\begin{aligned}
& \begin{array}{lll|lllll}
A & B & C & f(A, B, C) & \frac{m_{0}}{1} & & \frac{m_{3}}{0} & \frac{m_{4}}{0} \\
\hline 0 & 0 & 0 & 1 & \frac{m_{c}}{0} \\
0 & 0 & 1 & 0 & & 0 & & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & & 0 & 0 & 0 & 0
\end{array} \\
& f=\underbrace{m_{0}+m_{3}+m_{4}+m_{6}}_{\text {midterm expansion }} \text { (Rec } \\
& \text { (prove ' }+ \text { ' associative) } \\
& \Rightarrow m_{0}+0+0+0=m_{0} \\
& \text { any row is similar, } \\
& 1 \text { nonzero ORd w/ zeroes. }
\end{aligned}
$$

What sort of functions are

A	B	C	M_{0}
0	0	0	1
0	0	1	0
0	1	0	0
	\vdots		\vdots
1	1	1	0

$$
\begin{aligned}
& m_{0}(A, B, C)= \bar{A} \cdot \bar{B} \cdot \bar{C} \\
& \overrightarrow{0} \cdot \bar{\sigma} \cdot \bar{o}=1 \\
& \overrightarrow{0} \cdot \bar{o} \cdot T=0 \text { yes, it } \\
& \text { matches, }
\end{aligned}
$$

$$
\overline{0} \cdot T \cdot \underline{0}=0
$$

$$
0 . T T=0
$$

 i. $\bar{A} \bar{B} \bar{C}$ really is correct

$$
T \cdot 0=0
$$ expression for M_{0}.

$$
T \cdot \bar{O} \cdot T=0
$$

$$
T \cdot T \cdot \frac{1}{0}=0
$$

MAXTERM EXPANSION

A	B	C	f
0	0	0	0
0	0	1	
0	1	0	
0	1	1	0
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
& \bar{f}=m_{0}+m_{3}=\bar{A} \bar{B} \bar{C}+\bar{A} B C \\
& f=\overline{\bar{f}} \\
&=\overline{A \bar{B} \bar{C}+\bar{A} B C} \xlongequal{\text { de morgan }}(\overline{\bar{A} \bar{B} \bar{C}})(\overline{\bar{A} B C}) \\
&=(A+B+C)(A+\bar{B}+\bar{C})
\end{aligned}
$$

Pushing Bubbles
implement using NOR logic

Bubble goes from ontent side to all inputs, or
De Megan's Laws vice versa

$$
\begin{aligned}
& \overline{A B}=\bar{A}+\bar{B} \Rightarrow A_{B}^{A}=0={ }_{B}^{A}=9 \\
& \overline{A+B}=\bar{A} \cdot \bar{B} \Rightarrow A=A=D_{B}^{A}=0 . \\
& =f
\end{aligned}
$$

equivalent curcint in NOR logic
AND-OR NAND-NAND

NAN D - NAND is complete logic family, if we have NOT.

is there a NAND circuit for this function?

NOR-NOR is complete, if we have NOT.

$$
A N D-O R \hookrightarrow N O R-N O R
$$

We can push bubbles to get a NOR-NOR cracit from an AND-OR cuanit. But, is there an easier way?

Is there an easier way to Get a NOR-NOR circint? yes, use a maxterm expansinn
or-And maxterm cuicuit

NOR-NOR maxterm curcuit

Karnaugh Maps are truth tables that allow us to find simpler logic expressions (and circuits). This is something that can also be done algebraically, but is usually harder that way. Is there a general procedure for minimizing circuits? (Is it computable?)

A	B	f
0	0	m_{0}
0	1	m_{1}
1	0	m_{2}
1	1	m_{3}

if all entries are 1's,

$$
\text { term }=m_{5}+m_{7}+m_{9}+m_{11}
$$

$$
=(B=1) \cdot(D=1)
$$

$$
=B D
$$

Find a collection of terms that:

1. covers all ones
2. has the fewest terms possible.

Term = a region where one or more variables are "don't cares": the output does not change when the variables change value, those variables make no difference. The values of the remaining variables define the term.

$$
\begin{aligned}
& \begin{aligned}
& \text { Suppose } f=m_{0}+m_{1}+m_{2} \\
&=1
\end{aligned} \\
& \text { is } m_{0}+m_{2}=\bar{A} \bar{C} \\
& f=\bar{A} \bar{B}+\bar{A} \bar{C}
\end{aligned}
$$

So, what can we say about mult-bit symbols as output from our Boolean functions? Deal with each bit of output symbol individually.

\longrightarrow are these 2 -bit symbols or 2 1-bit symbols? Could be either:

2 symbols

$$
\begin{aligned}
\{A, B\} \times\{\theta, \phi\} & \rightarrow\{\Theta, \&, *, \$\} \\
S_{1} \times S_{2} & \longrightarrow S_{3}
\end{aligned}
$$

$O R$

$$
\begin{gathered}
f:\{00,01,10,11\} \rightarrow\{00,01,10,11\} \\
* 4 \text { symbols } * 4 \text { symbols } \\
\{巴, \&, *, \$\} \rightarrow\{巴, \&, *, \$\}
\end{gathered}
$$

In general, we can now handle any functions with m-bit input and n-bit output. We can implement in hardware:
$===>$ ANY finite symbol set of size $2^{\wedge} k$ by using $\{0,1\}^{\wedge} k$ multi-bit symbols $===>$ ANY finite combination of finite sets
$===>$ ANY functions mapping from any combination to any combination

