FSM implementation

need to frild

1. Symbels
2. furctions
3. State
(4. tupe, for UTM/Computer)

Any technology will do.
mechanical: Babbage, etc.
electro-mechanical \leftarrow we stant here
ele tronic
?

Ohm's Law, conductors,...

$$
\Rightarrow I=\left(\frac{1}{R}\right) V \quad \Rightarrow V=I R
$$

(if relationship is linear, then Ohm's haw Resistor) or linear device.
 BOUND

$$
V \sim h \cdot g \quad \text { Power }=f \text { flow }(h \cdot g)
$$

Work = Energy
$V=E \times$ distance \sim Tower height gravity

$$
V=I R
$$

fix $V:$ as $R \rightarrow 0$ then $I \rightarrow \infty$
as $R \rightarrow \infty$ then $I \rightarrow 0$
$V=V_{1}-V_{2}$
Energy oVER distance per e^{-}

$$
\begin{aligned}
& \text { power }=\text { energy/sec } \\
& =I^{\star} V=I^{*}\left(I^{*} R\right)=I^{\star} I^{*} R \\
& =I^{\star} V=(V / R)^{\star} V
\end{aligned}
$$

$R \rightarrow 0$ then Power $\rightarrow \infty$
$R \rightarrow \infty$ then Power $\rightarrow 0$

$\mathrm{i}=\mathrm{i} 1+\mathrm{i} 2$
What is total R ?

If $\mathrm{R} 1=\mathrm{R}$ 2 Then $\mathrm{i} 1=\mathrm{V} / \mathrm{R} 1=\mathrm{i} 2$
$\mathrm{i}=\mathrm{i} 1+\mathrm{i} 2=2^{*} \mathrm{~V} / \mathrm{R} 1$

Resistors connected in PARALLEL.
Same as two water pipes in parallel: less resistance to flow, total flow is sum of flow in both.

Water pressure, voltage, is same for both paths.

Resistors connected in SERIES.

Same as two pipes end-to-end: more resistance, less flow, same flow in both.
$R=V / i=(V 1+V 2) / i$
$\mathrm{V} 1=\mathrm{i}^{*} \mathrm{R} 1 \quad \mathrm{~V} 2=\mathrm{i}^{*} \mathrm{R} 2$
$R=\left(i^{*} R 1+i^{*} R 2\right) / i=(R 1+R 2)$

We need Signal-Restoring, Non-Linear Logic. Ohm's Law devices are LINEAR.
Suppose we had only linear devices (or something very nearly linear), then signal output has errors proportional to input errors.

Errors/noise :

Linearity:

$$
f\left(v+e_{\text {in }}\right)=k\left(v+e_{\text {in }}\right)+e_{\text {out }}=k v+k e_{\text {in }}+e_{\text {out }}
$$

Total error

Suppose we connect 2 in series

$$
\begin{aligned}
f_{1}(\text { in })=f_{1}(v+e) & =k v+k e_{0}+e_{1} \\
& =(-1)(-1)+(-1) e_{0}+e_{1} \\
& =1-e_{0}+e_{1}
\end{aligned}
$$

$$
\begin{aligned}
f_{2}\left(f_{1}(i n)\right) & =f_{2}\left(1-e_{0}+e_{1}\right) \\
& =-1+e_{0}-e_{1}+e_{2}
\end{aligned}
$$

(v is nominal signal: ± 1)

The errors include signs = random walk with random size steps.
Errors independently random $\mathrm{w} /$ average $0==>$ variance increases w / k.
Total error grows who bound!

Take random step (either in the -1 or +1 direction).
How far from 0 can you expect to be after k steps? About k^1/2 away. With probability 0 you will be at 0 , and error gets unboundedly large.

We must Reduce error at each stage ==> exponentially decreasing effect in later stages.
Non-Linear

after k stages: $=1+\sum_{i=0}^{k}\left(\frac{1}{g}\right)^{i} e_{i}$
If g is large enough (flat areas of curve are flat enough),
and
if output error size is not too big,
Then
output after k stages never hits FORBIDDEN ZONE.
So, if we plan to have a circuit with long device chains, we must have non-linear devices w/ suitable response curves.

Do we plan to have long chains? YES:
(1) feedback in system,
(2) chained data operations: D1 ==> D2 ==> D3 ==> D4 ...
(3) 1 Billion devices per cpu

Permanent
magnet

Electronic Switches: VacuUM Tubes

Faster, more reliable, less power

Solid state devices-Semiconductors

Phosphorous impurity:
e- leaves easily, becomes "hot" conduction-band e-

Boron impurity:
"cold" valence-band e- arrives, leaves behind +valence "hole" which moves.

Holes and e-move in opposite directions, but current direction is same.

Easy e- flow from n-type to p-type, but reverse flow hard: "cold" valence-band e- need too much energy to become conduction band e-.

Just what we want: nice non-linear switch.

A	B	P_{1}	P_{2}	N_{1}	N_{2}	$O U T$				
0	1	$\\|$	$\\|$	$\\|$	$\\|$	O_{V}				
			$\\|$	$\\|$	$\\|$					
1	0	$*$	$\\|$	$\\|$	$*$	O_{V}				
0	0	$\\|$	$\\|$	$*$	$*$	$V_{C C}$				
1	1	$*$	$*$	$\\|$	$\\|$	O_{V}				

A	B	$0 u t$
0	0	1
0	1	0
1	0	0
1	1	0

Logic CIRCUITS
Two kinds of logic circuits:
(1) w/ feedback, SEQUENTIAL: can hold STATE
(2) w/o feedback, COMBINATORIAL: realize FUNCTIONS

Basic logic gates: NOT, 2-input NOR, 2-input NAND.
That's all we need for both sequential and combinatorial circuits.
(NAND alone is sufficient, also NOR alone is sufficient.)

Sequential
sTate I feedback

what are the voltages?

Step 1 Assume \rightarrow see if consistent
 conducting

Consistent, stable

not conducting

do matt, tu lu

Circuit has two stable states: aka, meta-stable, bi-stable.
What state when power is first turned on? Unknown, random.
Can we set the state, using voltage inputs? No, useless!?!

Basic Sequential elements

WAND

when $A=1, Q=\operatorname{NoT}(B)$

CIRCUITS W/ STATE
NOT-NOT circuit is stable in either of two states: BISTABLE element.
NAND-NAND circuit with both A inputs $=1$,
same as a NOT-NOT circuit.

WAND

$$
\begin{array}{ll}
\bar{R}=\bar{S}=1: \text { stable } \\
\bar{R}=1, \bar{S}=0: \text { Set } Q=1 \\
\bar{R}=0, \bar{S}=1 \text { : reset } Q=0 & -\bar{S} \quad \begin{array}{|c}
\bar{R} \\
\text { sR latch } \\
Q
\end{array} \\
\end{array}
$$

