ovTPUT

T M~ omplementtion o :

nvexT
State

ToTal- |
sTarE | STATE

ELEMENTY
E—

We take liberties with the terms "TM" and "UTM", but in basic concepts we're ok.
To build any TM, WE NEED:

--- FSM:
--- state
--- logic functions (output and next-state)

--- Tape: a variety of methods to RW symbols, we'll use registers (RAM).

--- Symbol set = a set of fixed length bit strings, e.g.,
--- length 1 strings: S = {0,1} (symbol set has 2 symbols)
--- length 2 strings: S = {00, 01, 10, 11} (4 symbols)
--- length 3 strings: S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

FB\N)A Fsm eveh - 0dd pa.r\'\'-a_

OuT : SX2
Funchios
Nt Stide : SxS —= &
ouT
— (B,9) —> 0
<A/') — |
(B)o) —>)
= = Syekde £0,1% 1) 5o
S = St < W03 L Go, oct 5
. ABCD encade (40) — A
We Nfel- | j >{°° °‘,l°J\l} (81) —> B
° FVN(]\OY\S (o) —5 B
o STATE ELEMENTS (B —> N\

--- in hardware for our simulator/computer/UTM.
--- in desc. language so we can describe any TM.

For our "UTM/simulator" to be universal (able to simulate any TM)
WE MUST HAVE:

--- a description language able to describe any TM,

--- a UTM/Simulator that can understand that language.

| LAN GUAgL

Language (ISA) needs to be able to describe:

--- Arbitrary set of states, including regs (= vars)
--- Arbitrary set of symbols

--- Arbitrary branching (via binary trees)

--- RW to tape

--- Arbitrary functions (next-state, output)

-\- Separate UTM into 2 pieces

U TM/S"““lo" or --- FSM controller (simulator's state)
' --- Datapath

siimulates using P

description of
simulated TM

"

--- current state (PC and var memory) JFS /\/\ } D ‘JF _H\

-- read tape (LDR => reQ) A E_‘QG‘\, instructions

-- output function: Covs ro\\@r for state 0
ADD, AND, NOT ... —

-- next-state function: Re 3 File + N—
ADD, AND, NOT ... t- req L

--- write tape (STR) A‘“_ﬁ:\c_@}ff_r;_ ‘

--- change state — KQ& |
PC ++, JMP, BRp, BRz, BRn MAR
STR => data state (var memory) (structions .’,_]

Represent description using small M D R for state 1

pieces, "instructions" that are

"executed" by machine cycle: TK

--- Instruction fetch B

--- Operand fetch

-- Execute PSR

--- Function evaluation v J é
--- Change state (branching) | — ALV
--- Operand store % __1_\ FCJS/VGYK
CTL SIGNALS b Wite o L
"ta.loe

FSM Controller uses registers (e.g., PC) to remember:
--- simulated machine's state (control state + data reg) (simulated
--- simulated symbols read (RegFile)
--- simulated machine's write symbols (RegFile)
--- its own machine state (controller state), ie. step of simulation
--- partial steps of function evaluations (next-state, output)

these are in data registers, mostly, but also PSR, on tape, ...

data reg is var on tape.)

STKTE E ENTS . N :
Pos. Q,Acb ,;f"r:'\r |93¢!‘¢) ?fb\)\Q.W\ - @ g@?g ?:izl;]goe(),pNS change, state

‘ change, NS change, ...
k¥ o

@ /\ \ % closed STATNE(,E

a\bm\s closed CRA
erh

€
@ " (, |@ TR

) @BO
1 C
8
N 2 |
clocK ‘—Q_/T- 3¢ v E"L:/' CLo(J(0 \)
— @ l\c.loSc

k\la\i& /1\6'\' VelvA T|'W\\.Y\3) ’Y\,\IV\js take Time

N s T W
Star i w + t

VT e e, e T
CLIL (el ___,_/_’\—_—__Jj—_,\

S+o+€ Ll\ n
T s
rlSe TW\Q ﬂoa|(

frop&g @-flo'n

Je)wg unt il X When is OUT

0vT resp srds valid? Do better w/
ine?
T IN 0—1 Moore machine*

One-hot FSM controller Data registers and functions
(write enable, select Operation/function)

is-State- | Q
State-0 ;C' m

fue B2 S ;

f“
Y Vee RS —
| B
e Q
)= RY Re
N
<‘(‘.lwﬂ'rc»l da'fapojk STATE[2: 0]

Exactly one reg's Q = 1, represents controller's state.

State affects datapath:

--- which data registers are write enabled,

--- what function is selected as Op.

(IR opcode bits plus State affect Op select, IR is part of control
state.)

LC3 Decode state-32

CoviT (ol Bmvm\/\w&

w o A-hst ?

MAR & P¢
PC & Pt

Control branching

35 — "State-0001" (ADD
2 % L R instruction's first state):
FF input is a function of
the value of the State-32
signal and the 4-bit
signal from IR[15:12].

§ AT MOST one Exactly ONE FF will
Jecoéﬂ output is 1

become hot, if state-32 32
FF is hot.
1 ve o 0001 0000
0000
S "
& dde | L.
v %)
v N

ALL Cmﬂtrc/ s'}aﬁ
fefs o wr'ffe (/M»uec)

Can we describe functions such as Select? How? Two possibilities:

(1) describe for any x how to calculate f(x).
(2) show for all x, the value of f(x).

We choose (2) ==> a table.

INPUTS: OUTPUTS:
state-32 IR[15] IR[14] IR[13] IR[12] 1111 1110 1101 .. 0001 0000
i 0 0 0 0 0 0 0 i
i 0 0 0 1 0 0 0 i 0
1 1 1 q 0 1 0 0 0
1 1 1 11 1 0 0 0 0

(ignore all rows for state-32 == 0; they are not relevant: all outputs are 0.)

whd aboit
Fe/dtzfms ht ane
hJL /)u/kcﬁm?
(X, 4)

(%, %)

¥LJ\,\¢\’ lJOOU-} T‘K7
¥ uha wL°v+ lm CSULS&‘{'S ﬁﬂi >>

oW) Wi\ Cro COA eb Co V\'\—ro“ﬁ A-Reg has controller's current state.

A

STATE is used as address to ROM.
Memory word selected by A-Reg's content (address)

A-Rey

ADDR

/r\

N
<Tae

uCode
Rom

ovT

Each row (word) of ROM has datapath control bits.
C-Reg has current "control word", its outputs control datapath.

Controller's Next-state bits are in next-state fields of C-Reg.

Control branching, One possibility:

-- branching is two-way, NS1 or NS2

-- MUX chooses one

-- MUX.select = f(STATE, IR, other inputs)

-- (Requires multi-stage branching for 16-way decode for LC3 ISA)

S

*L.C3 ucode controller has different branch scheme. Harder to grasp,
ut one-step, 16-way branching.

v
o E T

SR

6 TR]

0-“\(" impujfs

)
L\ > Lb-PC

> LD_MAR

\\ Cm“}rol sfjmwls
> Gate_pC J&) DA&,&)E/HW

> LD_MDR

°
’
°

Advantages of ucode controller:

-- easier to change

-- less logic circuitry to figure out

-- easier to expand to include new functionality: install
bigger ROM.

Advantages of "random logic" controller:
-- faster

-- smaller (?)
-- easier to distribute throughout machine

Let's get back to simpler things (FSM).

We will have:

--- 1-bit state elements

--- 1-bit function elements

How do we put them together to form a FSM?

R WMod-3 wachine:

STATE E£NCopinGes

-

J/V.
ag One- L\o+
\
el emdds
- Y
A |00 |
2 STATE ELEMENTS c
(OO
Can we describe f ? Let's use a table.
inputs: outputs:
IN Q2 Q1 QO D2 D1 DO
0 0 0 1 (A 0 0 0 (A
1 0 0 1 (A 0 1 0 (B
0 0 0 1 (B 0 1 0 (B
1 0 0 1 (B 0 1 0 (C)
0 0 0 1 (C 0 1 0 (C)
0 0 0 1 (C 0O 1 0 (A
* * * * X X X

("*" row is for all other rows not shown. "X" is for
don't care, either 0 or 1, since cannot happen.)

inputs outputs:
IN Q1 QO D1 DO

0 0 0 (A 0 0 (A
1 0 0 (A 0 1 (B)
0 0 1 (B) 0 1 (B)
1 0 1 (B) 1 1 (C)
0 1 1 (C) 1 1 (C)
0 1 1 (C) 0 0 (A
* * * X X

("*" rows cannot be reached.)

If we have a universal language (able to describe any TM)
All we need to know is How To Build:
--- 1-bit state elements?

--- 1-bit functions?

