
We take liberties with the terms "TM" and "UTM", but in basic concepts we're ok.
To build any TM, WE NEED:

--- FSM:
 --- state
 --- logic functions (output and next-state)

--- Tape: a variety of methods to RW symbols, we'll use registers (RAM).

--- Symbol set = a set of fixed length bit strings, e.g.,
 --- length 1 strings: S = {0,1} (symbol set has 2 symbols)
 --- length 2 strings: S = {00, 01, 10, 11} (4 symbols)
 --- length 3 strings: S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

--- in hardware for our simulator/computer/UTM.
--- in desc. language so we can describe any TM.

Language (ISA) needs to be able to describe:

--- Arbitrary set of states, including regs (= vars)
--- Arbitrary set of symbols
--- Arbitrary branching (via binary trees)
--- RW to tape
--- Arbitrary functions (next-state, output)

--- current state (PC and var memory)
--- read tape (LDR => reg)
--- output function:
 ADD, AND, NOT ...
--- next-state function:
 ADD, AND, NOT ...
--- write tape (STR)
--- change state
 PC ++, JMP, BRp, BRz, BRn
 STR => data state (var memory)

Represent description using small
pieces, "instructions" that are
"executed" by machine cycle:

--- Instruction fetch
--- Operand fetch
--- Execute
 --- Function evaluation
 --- Change state (branching)
--- Operand store

instructions
for state 0

instructions
for state 1

FSM Controller uses registers (e.g., PC) to remember:
--- simulated machine's state (control state + data reg) (simulated data reg is var on tape.)
--- simulated symbols read (RegFile)
--- simulated machine's write symbols (RegFile)
--- its own machine state (controller state), ie. step of simulation
--- partial steps of function evaluations (next-state, output)
 these are in data registers, mostly, but also PSR, on tape, ...

Separate UTM into 2 pieces
--- FSM controller (simulator's state)
--- Datapath

description of
simulated TM

For our "UTM/simulator" to be universal (able to simulate any TM)
WE MUST HAVE:
--- a description language able to describe any TM,
--- a UTM/Simulator that can understand that language.

Feedback loop:
state change, NS change, state
change, NS change, ...

When is OUT
valid? Do better w/
Moore machine?

One-hot FSM controller Data registers and functions
(write enable, select Operation/function)

Exactly one reg's Q = 1, represents controller's state.
State affects datapath:
--- which data registers are write enabled,
--- what function is selected as Op.
(IR opcode bits plus State affect Op select, IR is part of control
state.)

LC3 Decode state-32

Control branching

"State-0001" (ADD
instruction's first state):
FF input is a function of
the value of the State-32
signal and the 4-bit
signal from IR[15:12].

Exactly ONE FF will
become hot, if state-32
FF is hot.

AT MOST one
output is 1

is-State-0

is-State-1

is-State-2

Can we describe functions such as Select? How? Two possibilities:

 (1) describe for any x how to calculate f(x).
 (2) show for all x, the value of f(x).

We choose (2) ==> a table.

INPUTS: OUTPUTS:
state-32 IR[15] IR[14] IR[13] IR[12] 1111 1110 1101 ... 0001 0000
-- --
 1 0 0 0 0 0 0 0 ... 0 1
 1 0 0 0 1 0 0 0 ... 1 0

 1 1 1 1 0 0 1 0 ... 0 0
 1 1 1 1 1 1 0 0 ... 0 0

(ignore all rows for state-32 == 0; they are not relevant: all outputs are 0.)

A-Reg has controller's current state.

STATE is used as address to ROM.

Memory word selected by A-Reg's content (address)

Each row (word) of ROM has datapath control bits.
C-Reg has current "control word", its outputs control datapath.

Controller's Next-state bits are in next-state fields of C-Reg.

Control branching, One possibility:

-- branching is two-way, NS1 or NS2

-- MUX chooses one
-- MUX.select = f(STATE, IR, other inputs)

-- (Requires multi-stage branching for 16-way decode for LC3 ISA)

*LC3 ucode controller has different branch scheme. Harder to grasp,

but one-step, 16-way branching.

Advantages of ucode controller:

-- easier to change
-- less logic circuitry to figure out
-- easier to expand to include new functionality: install
 bigger ROM.

Advantages of "random logic" controller:

-- faster
-- smaller (?)
-- easier to distribute throughout machine

Let's get back to simpler things (FSM).
We will have:
--- 1-bit state elements
--- 1-bit function elements
How do we put them together to form a FSM?

Can we describe f ? Let's use a table.

inputs: outputs:
IN Q2 Q1 Q0 D2 D1 D0
-------------------------- ---------------------
0 0 0 1 (A) 0 0 0 (A)
1 0 0 1 (A) 0 1 0 (B)
0 0 0 1 (B) 0 1 0 (B)
1 0 0 1 (B) 0 1 0 (C)
0 0 0 1 (C) 0 1 0 (C)
0 0 0 1 (C) 0 1 0 (A)
* * * * x x x

("*" row is for all other rows not shown. "X" is for
don't care, either 0 or 1, since cannot happen.)

Can we describe f ? Let's use a table.

inputs: outputs:
IN Q1 Q0 D1 D0
---------------------- ------------
0 0 0 (A) 0 0 (A)
1 0 0 (A) 0 1 (B)
0 0 1 (B) 0 1 (B)
1 0 1 (B) 1 1 (C)
0 1 1 (C) 1 1 (C)
0 1 1 (C) 0 0 (A)
* * * x x

("*" rows cannot be reached.)

If we have a universal language (able to describe any TM)

All we need to know is How To Build:

--- 1-bit state elements?

--- 1-bit functions?

