
TM's FSM (the CONTROL part of a TM)

 No tape, one input, two outputs:
 -- IN-SYMBOL, OUT-SYMBOL, MOVE

 For FSM, inputs/outputs are time series:
 time: 0 1 2 3 4 5 6 ...

 input : 0 0 0 1 1 1 0 ...
 output: 0 1 1 0 1 0 1 ...
 move : 0 1 1 0 1 0 1 ...

For a physical state machine, we must talk
about time explicitly, physical state
changes in time."SEEN 0" registers that we've seen a 0,

"SEEN 1" registers that we've seen a 1.

STATE has two parts:
 -- step of operation
 -- symbol seen

A real machine has a PHYSICAL state,
physical stuff that changes in time.

1-bit register ==> 2^1 == 2 states
k-bit register ==> 2^k states

2 1-bit registers ==> 2^(2*1) == 4 states
2 k-bit registers ==> 2^2k states

(2-state control) X (4-state data reg) == 8 complete states possible. Before reading input, we don't care which of top 4
states we start in, we know we have not yet registered some data: we are in the "get-data" control state. We are in the
"data-registered" control state after. (What if 32-bit symbols ==> 4G branches; something we'd like to hide.)

Suppose physical state is composed of one 2-state
element and one 4-state element. Altogether, we have
a physical system with eight possible states.

BIG IDEA:

SPLIT TOTAL STATE into two parts:

--- 1. OPERATIONAL STATE
 Where we are in doing things

--- 2. DATA REGISTER STATE
 What we know at this point

registering a 32-bit input symbol :

-- TOTAL STATE:
(2 Operational states) X (4G data states)

versus

-- 2 Operational states + content of reg.

Change "operational state"
depending register content.

-- States associated with Register
Transfer operations (described using
RTL).

-- Branches labeled w/ register
content (or partial content).

CLOCK causes:

---- register data transfers
---- control state changes

USE REGISTERS for BOTH
---- "STATE" registers
---- "DATA" registers

---- BOTH types change w/ CLOCK

Complete state:
(1) ready-for-data-and-reg-is-zero,
(2) got-data-and-reg-is-zero
(3) got-data-and-reg-is-one

Control state:
(1) get-data
(2) got-data

BIG IDEA:

-- Reusable sub-parts.

-- link_reg provides return
mechanism.

Hierarchical design
-- "subroutine" is a component
-- components connected

Same as putting one TM into
another.

HW = SW
-- Machines or descriptions of
machines can have hierarchical
design.

 state 5
 link_reg = 6

state 6

 RET

[link_reg]

 state 37
link_reg = 38 state 38

MEALY MACHINE

OUT is continous function of IN+STATE.
STATE changes w/ clock
OUT changes w/ changes in STATE and/or INfunction:

 OUT(in, state)

function:
 NS(in, state)

State reg
 (n bits)

Are they equivalent? Check that same input
streams give same output streams.

Output while in a specific state is
always the same, regardless of
input changes: output only
depends on current state.

split states by the
output on a transition.

function:
 OUT(state, reg)

function:
NS(in, state)

State reg
 (n bits)

Moore machine:

AT CLOCK TICK:

-- data_reg output changes:

 data_reg.out == IN

-- State_reg output changes:

 State_reg.out == NS(in, state)

No changes until next tick,
even if input changes.

data reg

OUT(in, state)

NS(in, state)

State reg
 (n bits)

data reg
A Moore machine:

--- OUT changes w/ clock

tick, when total STATE
changes, and does not
change until next tick.

--- OUT is a function of

total STATE (control and
data registers); input does
not affect OUT. In this
case, it is not dependent
on current control state,
but previous control state.

BIG IDEA: Extend simulator with additional hardware (hardware subroutines).

We can add hardware to our computer/simulator:

--- Our description of a machine can have a sub-routine for MULTIPLY,

--- OR, we could add a symbol "X" that causes our simulator/computer to branch to a hardware
subroutine: FASTER. Desc(M) is also SMALLER. (*but is computer then slower?)

-- Software == Hardware

Could we extend the desc(M) in the same way?

Could we have some TM, T, described as part of the description of M?

Perhaps we wouldn't even put desc(T) into desc(M)?

Only put an indicator that desc(T) should be inserted into desc(M)?

desc-L1(M)

uses "X" but w/o subroutine.

Tr, a Translator TM:
input: desc-L1(M)
output: desc-L0(M)

desc-L0(M)

has sub-routine for multiply.

UTM
Reads desc-L0(M),
simulates M.

Tr
1. reads desc-L1(M),
2. sees "X" in rule in desc-L1(M)
 --- writes desc-L0(Mult) as part of
 --- desc-L0(M), fixing up state transistions accordingly

L0: "Instruction Set Architecture", ISA, is language of simulating machine, UTM.

desc-L1(M)
 w/ "X".

desc-L0(Tr) desc-L0(M)
 w/ subroutine for Mult (desc-L0(Mult))

UTM

UTM simultates Tr, then simulates M. We can,

--- Add levels: desc-L2(M), and L2-L1 translator.
 --- Eg., scripting language => C++ => C => asm => ISA
--- Migrate subroutines down to lower levels, eventually into UTM's hardware.
--- UTM-0 simulates different UTM-1: desc-L0(UTM-1), UTM-1 has its own ISA.
 ==> interpreted languages, JAVA bytecode.

Simulating a UTM?
Use UTM-A and desc-LA(UTM-B)
==> Simulate UTM-B simulating M.

UTM-A understands descriptions written in L-A.

UTM-B understands descriptions written in L-B.

==> desc(UTM-B) is written in L-A
==> desc(M) is written in L-B

UTM-A simulates UTM-B simulating M.

Let's make things even more exciting!

Have symbol "X" in L-Java,
keep symbol "X" in L-JVM,
have Java-Virtual-Machine jump to
desc-LC3(TM-for-symbol-"X") ===> precompiled, faster than simulating
OR
keep "X" in desc-LC3(TM-for-symbol-"X")
jump to LC3 hardware-sub-TM-for-symbol-"X" (hardware sub-routine)!

