
Computed: follow a fixed procedure and 
produce an answer (halt), aka algorithm.

What can be computed? What cannot? 
What can be computed efficiently (and 
how)?

If a single question really is answerable 
"yes" or "no", then one of the machines, 
Myes or Mno, computes the answer. We just 
don't know which one is correct.

Any finite set of examples can be computed: 
just make a table and look up the answer.

Are all programs (TMs) algorithms? No.

for (i = 1; i > 0; i = 1){
    j = j+1;
}

We can decode any finite set of questions using a 
fixed branching tree. For each leaf, we simply print 
the answer.

A look-up table.



Fermat's Last Theorem

Conjecture: There are no solutions to,

            x^n + y^n  =  z^n

where n, x, y, and z are positive integers and n > 2.

Proved in 1995: Frey, Ribet, Wiles, 
Taylor.

Given some positive integer n > 2, is there a solution to,

      x^n + y^n  =  z^n

where x, y, and z are positive integers?



How many questions are there? How many TMs?  DIAGONALIZATION

In our encoding, we used a string of 0s and 1s to represent a TM. Symbol set is {0, 1}.

--- Each TM can be identified with an integer. (There are infinitely many machines that do the same thing.)

--- Each input tape configuration can be identified with an integer.

--- Each output tape configuration can be identified with an integer.

--- Each TM can be looked at as an integer function: given input, x, machine M produces integer M(x).
 ---NB M might loop forever on some inputs, if so then M is a "partial" function.

How many integer functions are there?

--- Diagonalization:
    g(0) != M0(0)
                         g(1) != M1(1)
                                                 g(2) != M2(2)
    ...

---- g() is not in the list!

--- How many different ways are there to pick g()?
      g(0) is any element from N - { M0(0) }
      g(1) is any element from N - { M1(1) }
      g(2) is any element from N - { M2(2) }
    ...

     The g()s are so numerous proportionally, 
that the probability of randomly picking a 
TM function from a bag of integer functions 
is 0.

[What the heck does that really mean?]

Maybe it only means we don't know how to 
arrange an infinite list of TMs? We are limited 
in our own computing power?

How "numerous" is "infinity to the infinity"?

Computable (real) numbers:
Given e, output finite number of digits of x so that 
the output is within e of x. 
PI is such a number.



As long as we are building TMs, lets see how to simplify our work.

How about combining two TMs to make a new one?

M3 starts in M1's FSM 
start state.

 Every M1 state 
transistion that goes to 
M1's "HALT" state is 
instead connected to 
M2's START state.

 M3's halting state is 
M2's "HALT" state.

skip 0's to the left, stop at 
the first 1, end up to its left.

read 1's leftward until finding a 0. 
If even number of 1's, add 
another 1 on left; if odd do 
nothing. Halt at left end of input. 



Lemma: All TM's with x as input, either (1) HALT or (2) LOOP FOREVER.   (exercise: prove the lemma.)
 
The "Halting" integer function:

input:   integer xM                       (xM == an encoding of input x followed by an encoding of a TM, M.)

output: "1" if xM HALTS;              (xM == M reading x as its input.)
            "0" for all other cases 

Asummption: Either (H exists) IS TRUE, or (H does not exist) IS TRUE.

Suppose (H exists) IS TRUE. 

Then we can build another machine, H+, using H and a "Copy" TM.

H+

    1. makes a copy of its input.
    2. does whatever H would do.

  WHEN H+ reaches
   1. "xM halts",  H+ LOOPS.
   2. "xM loops", H+ HALTS.

  will
 HALT

  will
 LOOP



Consider putting desc(H+) on H+'s input tape. What must happen?

H+ first does exactly what Copy would do, copy its input. Next, H+ starts doing exactly what H would do.

The tape is now thought of as an input "desc(H+)", followed by a description of H+.

H+ WILL either (A: reach "HALTS" and loop)  OR   (B: reach "LOOPS" and halt).

(A.) SUPPOSE desc(H+)H+ loops.

1. H+ reached HALTS.
2. Then H with input xM == desc(H+)desc(H+),
would have halted in HALTS.
3. BUT desc(H+)H+ loops.
4. Since H is correct, this cannot happen.
5. (A.) cannot happen: desc(H+)H+ cannot reach HALTS.

We assumed H is correct. 
So, we supposed wrongly that H+ loops.



(B.) SUPPOSE desc(H+)H+ halts.

1. H+ reached LOOPS.
2. H reading desc(H+)desc(H+) must reach LOOPS.
3. BUT desc(H+)H+ halts.
4. H is correct; so, H cannot reach LOOPS.
5. (B.) cannot happen: desc(H+)H+ cannot reach LOOPS.

We assumed H is correct.
So we assumed wrongly that H+ halts. 

Build something H- that partially computes the Halting Problem?

Works for some inputs, but not others?

Works for some fixed number of inputs?

Has a lookup table?

How many machines act exactly like any given description?

How many descriptions are there?

How many other things are not Turing computable? What does this say about cognition? ...???



Hnew( x, M)

print "loops forever"

1. Simulate xM for one step.
2. If  xM halted
            print "halts"
    else
            go to 1.



Formal Proof

Notation: "[halts]" means "H+ halts when reading its own description"; "[loops]" is to be read similarly; "==>" 
means, "implies", in the logical sense of material implication; "-" means logical NOT.

1. (H exists)    ==> (H+ exists (is a TM))                                                (by properties of TM)

2. (H+ exists)  ==>  [halts] OR [loops]                                                   (by properties of TM)

3. (H+ exists)  ==> -[loops] AND -[halts]                                                (demonstrated above)         

4. (H exists)  ==>  ( [halts] OR [loops] )  AND  ( -[loops] AND -[halts] )   (by 1. and 2.)

5. (H exists)  ==> ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )      (by AND/OR properties)

6. p ==> q   EQUALS  -q ==> -p                                                            (by properties of "==>")

7. -(  ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )  )  ==> -(H exists)   (by 5. and 6.)

8. -(  ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )  )                       (true by AND/OR properties)

9. -(H exists)                                                                                          (syllogism applied to 7. and 8.)


