
Lec-5-HW-4-regFsm

(Problem) -------------------------------
Suppose we have physical hardware devices that have three possible states, {HI, 0, LOW}. 
Suppose we want to record, i.e., register, an input symbol from the symbol set {A, B, C}. We start 
by getting the first symbol from input. Next, now that we know what symbol we have, we want to 
get another symbol. After we have both symbols, we next decide whether the letters we got from 
input are,
(1) both the same symbol, then go back to the start state;
(2) the first comes before the second in alphabetic order, then output "A";
(3) the second comes before the first, then output "C". 

(a) Implement this as a Moore machine: draw the total state transition diagram. You can ignore 
output for states for which no output was indicated. You may also have transitions that do no input. 
How many total states are needed, assuming you used the minimum number of states. How many 
of our 3-state physical state devices would be required to physically implement the state for this 
machine?

(b) Implement this as a finite-state-machine controller with a data path consisting of two registers. 
That is, draw the state transition diagram for the controller, using RTL to indicate datapath register 
operations. Use "IN" for the source of input and "OUT" as the output. Label your controller's 
conditional branching with boolean expressions such as, for example, "Reg1 < Reg2" to mean the 
the symbol in Reg1 preceeds that in Reg2. How many total 3-state physical state devices would be 
required to implement this machine?



(Problem)---------------
Implement the even-odd parity machine described in lecture,
(a) as a Mealy machine (outputs on state transistion arcs)
(b) convert your Mealy machine to a Moore machine using the conversion shortcut 
mentioned in lecture. Draw a timing diagram to explain the timing relationships between 
inputs and and outputs.

(Problem)------------------------
Suppose we have a TM, M, with a built-in even-parity machine as part of its FSM. Let's 
suppose its symbol set includes "e": whenever it sees "e" as input, it enters the start state of 
the parity machine. Suppose it also has a register that serves to record which state it should 
enter after exiting the parity machine. (We'll think of it in our controller/datapath model.) Using 
the controller/datapath model, and using RTL for controller states, show two different states, X 
and Y, of M that cause a transfer to the parity machine. Also show the return from that 
hardware sub-routine. You can suppose there are only two states it can return to, states A and 
B, A if it enters from state X or B if it enters from state Y. Show how M sets up the return, and 
how the return branching is done. You will need more states than just X, Y, A, and B. 



(Problem)-----------------------
In the previous problem, M was a TM (even though we described it in the controller/datapath 
model.) Certainly, we can describe M appropriately for some UTM and simulate it. Suppose 
we want to describe M, but we do not want to describe the parity machine. Instead, we will 
run a translator that will insert the parity machine into M's description for us. Briefly explain 
what mechanism the translator can use to,
(1) detect that the parity machine description should be inserted
(2) make the proper state connections so it will work correctly.

(Problem)-------------------
Suppose we want a description language that works for TMs conceptualized in the 
controller/datapath model. In that model there is a controller FSM to describe, registers and RTL 
operations to describe, and functional data operations to describe. It was easy to devise a 
language for describing TMs in the Turing sense of description: it was just a rule table. Suggest a 
language approriate for composing descriptions in the controller/datapath model. In particular, 
suggest how to describe RTL operations and controller conditional branching. 



(Problem)-------------------
Assume the previous problem defines a language, L, suitable for describing machines in the 
controller/datapath model, and that there exists a simulator, S, appropriate for that 
language. Using that language, could we describe a simulator, U, that reads descriptions 
written in another language, K? Could we use S to simulate U using its description in L? 
Suppose that were possible, what language would we use to write descriptions for U to 
simulate?

(Problem)----------------------
A flip-flop, FF, has the feature that its output is isolated from its input so that its output can 
only change once per clock tick. When the output changes, we say the FF's state 
changed. Early electronic computers used liquid (mercury) as storage elements: a ripple 
was sent along a horizontal tube partially filled with liquid. The ripple would bounce and 
return when it got the end of the tube. When it arrived back at the beginning, it could be 
detected as a stored value and regenerated. Is this device a FF? Explain. In particular, 
could it be used to implement controller state? 



(Problem)---------------------
Consider two FSMs. The first, M1, sends its output to the second, M2, where it is used 
as input. M2's output likewise goes to M1. It there any problem with the timing of valid 
data in this arrangement? Illustrate with a timing diagram.

(Problem)--------------
Here is the rule table for a FSM, M (a Moore machine, ignore output):

current-state    input     next-state
    A                      0             B
    A                      1             C
    A                      2             A    
    B                      0             C
    B                      1             A
    B                      2             C   
    C                      0             B
    C                      1             C
    C                      2             B

(1) Pick a 1-hot state encoding.
(2) Show the next state function, F, as a table, using that encoding.
(2) Implement M: show state elements, indicate the next state function as a circle. 
Note: The next-state function will actually consist of several functions that implement control 
branching. Indicate each as a circle with a description of its branching logic.   


