
PUZZLE

Write a program in LC3 machine code which alters its first two
instructions using data A and B:
 (1) instr_0: opcode <== opcode + A, only opcode is altered.
 (2) instr_1: opcode <== opcode + B, likewise.
regardless of where the program might be located in memory. Assume
PC initially contains address of memory word containing instr_0. Data A
and B are in consecutive memory words as part of program. Don't
worry about what happens after the end of the program is reached.

Below we explore LC3 instructions and their execution. Register Transfer Language (RTL) indicates
the operation and the required control signals are listed. For example,

 MAR <== PC
LD_MAR

indicates that the content of PC transfers into MAR, and LD_MAR control signal must be 1 (all other
control signals are assumed to be 0.) Necessary signal paths are shown like this, for example,

 IR[15:12]->FSM.in

which indicates that the 4 high-order bits of the IR need to be routed to the control FSM's input.

NB--Control state numbers look strange: F1 is state-18, F2 is state-33, F3 is state-35, etc.

The test bench, "top_rtl_testInstr", in the test.jelib Electric library displays the current simulation tick,
the FSM's state, non-zero control signals, and non-zero MUX controls, eg.,

 -------------------------------------(3)--------------------------
 -------(((18)))-------[LD_MAR]---------[]-----------------

indicates the current tick is 3, the current state is 18, the LD_MAR is 1, and all MUX select signals
are zeroes. Following the above is a listing of the content of all CPU registers (PC, MAR, MDR, IR,
PSR, and all eight registers in RegFile).

fetch instruction:

State 18:
 MAR <= PC,

GatePC
LD_MAR

 PC <= PC + 1
PCMUX = 00 (select)
LD_PC

State 33:
 MDR <= MEM_OUT

LD_MDR

State 35:
 IR <= MDR

LD_IR

also for state-33:
MIO_EN = 1
R_W = 0

NB--State diagram indicates
branch on signal S as, e.g.,
 "[S]"
or as labels on arcs, e.g.,
 "R=0"

1. See top.Mem-IO bus (address decode, tri-states, control bus).
2. See test.testInstr (initializing memory).

Operate Instructions (operators: ADD, AND, NOT)

NOT

State-9:
IR[15..12] -> FSM.in
IR[11..9] -> RegFile.DR
IR[8..6] -> RegFile.SR1
ALU.out -> RegFile.in

 DR <= NOT(SR)
GateALU
LD_REG

 LD_CC
ALUK = 10

Before:
Regfile[101] = 1100101011110000
After:
Regfile[011] = 0011010100001111
Regfile[101] = 1100101011110000

r5 <== NOT(r3)
not r5, r3

ADD (3-register addressing)

State-1:
IR[15..12] -> FSM.in
IR[11..9] -> RegFile.DR
IR[8..6] -> RegFile.SR1
IR[2..0] -> RegFile.SR2
IR[5] -> SR2MUX

 DR <= SR1 + SR2
GateALU
LD_REG

 LD_CC
 ALUK = 00

A - B ? How about A + (-B) using 2s-complement?

 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1

 0 0 0 1 0 1 0 0 0 0 0 0 1 0

ADD (2-register/immediate addressing)

State-1:
IR[15..12] -> FSM.in
IR[11..9] -> RegFile.DR
IR[8..6] -> RegFile.SR1
IR[5] -> SR2MUX
IR[4..0] -> SEXT.in

DR <= SR1 + SR2
GateALU
LD_REG

 LD_CC
ALUK = 00

A - B ? How about A + (-B) using 2s-complement with immediate constants?

 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1

 0 0 0 1 0 1 0 0 0 0 0 0 1 0

Load/Store (load a register from memory, store register
contents in memory)

LD / ST (pc-relative addressing)
LD
State-2:

IR[8..0] -> SEXT
 PC -> ADDR1MUX

SEXT -> ADDR2MUX -> MARMUX
 MAR <= PC + IR[8..0]

GateMARMUX
LD_MAR

State-25:
 MDR <= MEM.out

 LD_MDR
 MIO_EN
 R_W
State-27:
 DR <= MDR

GateMDR
 LD_REG
 LD_CC
 DRMUX == ?

x2019: 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1
x201A:

x20C9: 0000 0000 0000 0101

 PC <== PC+1
 (== x201A)
 MAR <== PC + SEXT(IR[8:0])
 (== x201A + x00AF)
 (== 0010000000011010 + 00000000101011)
 (== x20C9)
 MDR <== MEM[x20C9] (== x0005)
 R2 <== MDR (== x0005)

LDI / STI (memory indirect addressing)
LDI:
State-10:
 MAR <= PC + IR[8..0]
State-24:
 MDR <= MEM[PC + PCoffset9]
State-26:
 MAR <= MDR
State-25:
 MDR <= MEM[MEM[PC + PCoffset9]]
State-27:
 DR <= MDR

x49E9: 1111 1111 1111 1111 (xFFFF)

x4A1C: 1010 011 1 1100 1100 (PC <== x4A1D)
x4A1D:
 MAR <== x4A1D + SEXT(x1CC)
 = 0100 1010 0001 1101 + 1111 1111 1100 1100
 = x4A1D - x0034
 = x49E9
 MDR <== xFFFF
 MAR <== xFFFF
 MDR <== x0005
 R3 <== MDR

xFFFF: 0000 0000 0000 0101

LDR / STR (register-indirect addressing)
LDR
State-6:

IR[8..6] -> RegFile.SR1
RegFile.SR1.out -> ADDR1MUX
IR[5..0] -> ADDR2MUX

 MAR <= BaseR + offset6
State-25:
 MDR <= MEM[MDR]
State-27:
 DR <= MDR

x0005: (BaseR = R2 = x0005)
...
x0012: xABCD
...
x0200: 1010 001 010 001101

 MAR <== R2 + SEXT(x0D) (== x0005 + x000D)
 (== x0012)

 MDR <== MEM[x0012] (== xABCD)

 DR <== MDR (R1 <== xABCD)

--
 DR <== MEM[BaseR + Offset6]

LEA (immediate addressing)

State-14:
PC -> ADDR1MUX
IR[8..0] -> ADDR2MUX
MARMUX -> RegFile.in

 DR <= PC + PCoffset9

x01FE:
x01FF:
x0200: 1110 101 111111101 (PC <== x0201)
x0201:
 R5 <== PC + SEXT(x1FD)

 1 1111 1101

 x0201 + xFFFD = x0201 - 3 =

x01FE:
x01FF:
x0200:
x0201:

DR <== PC + Offset9 = x01FE

