
Lec-4-vonNeumann

What we are looking for

-- A general design/organization

-- Some concept of generality and completeness

-- A completely abstract view of machines
 a definition
 a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene, listen to

Dave Patterson:

 Computer Architecture is Back:
 Parallel Computing Landscape

http://www.youtube.com/watch?v=On-k-E5HpcQ

We need a language rich enough to describe
any function, then we can describe any
machine, and simulate it.

Need some way for the machine to "know"
what the outcome was.

NB--It's not obvious what capabilities we need.
Can we find a model that could tell us that?

Memory can be thought of as
an array, the address is the
array index:
 Memory[address] <== in
 out <== Memory[address]

recreate a branched graph in
linear memory. Execution follow
path through graph.

Two devices cannot both set the
signal value on a wire at the same
time. E.g., device1 says it's "0" and
device2 says it's "1".

Controller "enables" one of the
tri-states at a time. Bus is
shared between devices.

 Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

PHASE:

Fetch instruction
-- 1st step, state F-1

PC <== PC+1
MAR <== PC

(Happens in parallel,
finalized when clock
pulse arrives.)

MAR, memory
address register:

which memory
cell is accessed.

MDR, memory
data register:

data sent to, or
received from
memory.

PHASE: Fetch instruction, --2nd step, F2

MDR <== Mem.out

Memory word selected by MAR is copied
into MDR, when memory is ready.

PHASE: Fetch instruction, 3rd step, F3

IR <== MDR

Instruction is remembered, ie., "registered".

Next state of
FSM depends
on opcode bits:

0001 = ADD-1
...
0110 = LDR-1
...
1100 = JMP-1

Evaluate Address

Sources for address calculation are
any machine registers:

IR
any of 8 registers in RegFile
PC
Interrupt Vector Register

calculated address is used to access memory to,

(1) get next instruction: JMP, BR, INT, TRAP, Exception

or

(2) transfer data between memory and register: LDR, STR

Fetching could mean,

1. move from memory to register
or
2. make available to ALU

LC3's "load from memory" instructions do nothing else but
copy from the MDR to a register; ie., no further phases.

Execution could mean,

1. Performing ALU operation and making result available
2. Load PC with address calculated in Address Calc. Phase.

--- Not all instructions execute every phase.

--- Multiple instructions could be simultaneously in
different phases. (How about same phases?)

--- Some phases must wait for the previous phase
to complete (eg., memory access)

Store could mean,

1. copy from a register into memory
2. move ALU result to register
3. move ALU result to memory
4. copy from one register to another

For LC3, ALU result always goes to register.

Big idea: don't build hardware,
describe it and have it simulated ==
programming.

Eham: Computation is everywhere.
Drah: Where?
E: Everywhere!
D: A car crash?
E: Yes.
D: A doll house?
E: Yes.
D: Me?
E: Yes.
D: What is the same about them?
E: They all change.
D: So, computation is change?
E: Yes.
D: Everything changes, so
computation is everywhere?
E: Yes.
D: What is computation?
E: Change.

D: So, everything changes, and because
everything changes, everything is
computation, and computation is change.
E: Yes!
D: Oh.
E: You see, it is really quite simple.
D: How simple?
E: There is a model.
D: A model?
E: Yes.
D: How is there a model?
E: Things are one way, then they are
another.
D: And that means there is a model?
E: Exactly.
D: How do I know there is a model?
E: That is an existence proof.
D: What is?
E: I just said there is a model, didn't I?

D: And a model means things are one
way, then another.
E: Now you've got it.
D: Isn't that the same as change?
E: Quite right.
D: So, a model is change and change is
computation and change is computation
because there is a model?
E: See, now you're getting the hang of it.
D: Oh.

D: I am a computer?
E: Without a doubt. When you change, which you do
constantly, you are computation.
D: Then, I'm not me before, nor me after, but I'm me as I
change?
E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if I don't change?
E: Everything changes.
D: So, there is nothing that doesn't change?
E: That's right, nothing doesn't change.
D: So nothing isn't computation. Does nothing exist?
E: Of course nothing exists. There is zero, zero exists.

D: So, what is a computer?
E: Something that does computation.
D: Doing computation?
E: That's it, computing.
D: So, computers compute?
E: Obviously.
D: And computing is change?
E: What else could it be?
D: Everything changes, so everything is a
computer?
E: Yes, absolutely.

D: So zero is not computation?
E: Yes, because zero is nothing. If it were something, then
it would be computation, because all things change.
D: So, does one exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, zero and one, I mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
D: But, if computation is everywhere, where is zero and
one.
E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only one of
them there.
D: So that's the existence of one?
E: What could be clearer?

D: Which part is the one which is not changing, and which
part is the not-one which is changing?
E: Everything changes.
D: Oh. So, one is computation, too?
E: Of course not. Zero plus one, now that's computation.
D: Isn't that one?
E: Yes.
D: Did it change?
E: Did what change?
D: Well, the zero or the one, or something.
E: I have no patience for this. Numbers cannot change,
they just are. Addition is a mapping, not change.
D: So, addition is not computation because nothing
changes?
E: Don't be silly. If anything is computation, then addition is.
Haven't you ever used a computer?
D: Yes, I guess.
E: I think you need to take more computer science classes
so you will know something about computing. Then we can
talk again. Run along now.
D: Thank you, professor Eham.

