Lec-4-vonNeumann

What we are looking for
-- A general design/organization
-- Some concept of generality and completeness
-- A completely abstract view of machines
a definition
a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene, listen to
Dave Patterson:

Computer Architecture is Back:
Parallel Computing Landscape

http://www.youtube.com/watch?v=0n-k-E5HpcQ

AifipiTh
A Mawnory

Von Newmann | VS,
o\eswf\'\kvx (ve \'\Ag\ ‘ ‘
>= {s.,c'w...le;;}
sk top | 0ot | phue N 51 .
G IN
7, FsSM
A : e .y
G |_ovutT
g,
B «
. thi-r‘ol

o‘a/ouT=GJ\ /WNQ:L

ke

& ®
a9-bit s;/wéa/:
2% symbols i 2> (46)

-

SToned Qroy‘m vS. What ?

>

ng s

|
E_ & —

Resd
Nr'j’q

—
—

———

bulm} e wt need ! SINE E\Mﬁ}?tﬁc ¢

/A\ N A ? d(.SU\JJe PUNt}tkhj (HWK+ #Q+C100¥PU+>

- =

Re

T

opercte
KE} Read
NAND[A,BB —> C av‘o'\‘\'rar1
NAND (b, g) —> F Boolean
NAND (c,€) Pmc\—imS
e

(/JT'I—I‘Q

S } feke |

(57m loo\s> }ﬂlde 2

J

Jescﬂpq'w o
of ‘
MA.OL\W\ ¢

M\

th

Some

l‘/MJu&J (‘

We need a language rich enough to describe
any function, then we can describe any

machine, and simulate it.

h

NB--It's not obvious what capabilities we need. Memory can be thought of as
Lhal ¢ (se.

Can we find a model that could tell us that? an array, the address is the
- array index:

. Memory[address] <== in
Convniangd, | oﬂ;\er]C vy d-m‘s AN D GR NoT out <== Memory[address]
PQ‘FDY‘ mance. A DB SV Q

mut, Div Memor

{ &%%Tt)‘ Load R&j / A\ dekess Res,
STACK St Rej, Address [: |
push Rey Re
u“& \’16‘4\&\ peop K(% Cz:)
(beanchiny :
COmp %(
nCY'l' S"t-a.'l'ﬂ

JC\; NC\-WV\

O

recreate a branched graph in
linear memory. Execution follow
path through graph.

Controller "enables" one of the
S %Q,\’ W\g) (,\)\\’E_S I tri-states at a time. Bus is
shared between devices.

1
device 4 }_——%__
= Y bavice L
Two devices canno't both set the ﬂ

— 1

Need some way for the machine to "know"
what the outcome was.

signal value on a wire at the same E
time. E.g., device1l says it's "0" and AATe
device2 it's "1". : v
evice2 says it's Tr \S_\'C\T\"QJ
RuS —
device ? I
3 .

6UT

\/ev'\loéxar w\'re/redq s"]‘dcs

x, 2 ,1 ,0
WV\kV\ONV\) hf}" L, 3, By E

V

BASIC
VIV g

FSMm

controfler

Mcmrxj
ADDR |

MAR, memory
IN address register:

Memory- 1 Jo
BvS

< [L/0

Tusteuction Ttxe cothon
—— e —

LC- ‘
Fe'\' o\\'i_\‘
LD.PC
1S INTAR Y
PcmvK
PHASE:

Fetch instruction
-- 1st step, state F-1

PC <==PC+1
MAR <== PC

(Happens in parallel,

finalized when clock
pulse arrives.)

Gsk?c \ Pro(cfs‘ol'{
Bvs

12 LDLMAR

SYSCLK

OuT which memory
cell is accessed.

MDR, memory

data register:
R/w

| data sent to, or
received from
memory.

Machine Cycle

C)(ecu'l"m'n Fetch instruction
A Decode instruction
P 45€51 Evaluate address
Fetch operands
Execute instruction
Store result

FSM
Controller Stale

. Con rc]
GatePC =1 . \
Lofe =1 S15nels

pemux = 10

Lp.MAR =1

wer [

ﬁ:e\‘c\;, F'-L

_—

Cotrellen_STeTe s

Pro (e s50R

Bvs

Rdy=©
Frowm, Fy

— _
£ L MAR
1234
L S1Sak

LD _MDR

PHASE: Fetch instruction, --2nd step, F2
MDR <== Mem.out

Memory word selected by MAR is copied
into MDR, when memory is ready.

QOV\T\" ro “ e

()ro e ssoR

Bvs

1L

16
1911, MA
ovt APDDPR

SYSaK

PHASE: Fetch instruction, 3rd step, F3

IR <== MDR

Instruction is remembered, ie., "registered".

L C. = fb ‘ - Qow‘\"f‘o“ei‘
= ' é Processor STATE
Bus DIAGIAM

FSm

MDD kerdiion
FoQAMAT
O P
—
|000|\ otheR Bits
—

Next state of

(e | @ decode
.

=S VA e FSM depends
~— on opcode bits:
imsteochion word 0001 = ADD-1
: 0110 = LDR-1
LS hbﬁ‘ T 1100 = JMP-1
evel . A&lr“ PC
(1% needed) TR

Evaluate Address

Sources for address calculation are
any machine registers:

IR

any of 8 registers in RegFile
PC

Interrupt Vector Register

calculated address is used to access memory to,
(1) get next instruction: JMP, BR, INT, TRAP, Exception
or

(2) transfer data between memory and register: LDR, STR

[e j
‘\ Fa\‘c\r\loperaw&‘ PhaSe

. — BYS [Rey
-] File

|
Wi | Ea—L
I |

[‘\LU cP-Q-r‘d.lo:hS

Fetching could mean,
| 1. move from memory to register

or
2. make available to ALU

LC3's "load from memory" instructions do nothing else but
copy from the MDR to a register; ie., no further phases.

—

Execvle p\f\&.SG

[y (.]

9 ALy p

—

Execution could mean,

1. Performing ALU operation and making result available
2. Load PC with address calculated in Address Calc. Phase.

LC-3 | 2., 4

<STOR E; p&\ASC ‘

Store could mean, Rej R@j oV €
1. copy from a register into memory ﬁ'\ {g,

2. move ALU result to register

3. move ALU result to memory l '/.}

4. copy from one register to another

For LC3, ALU result always goes to register. 1 .
M A\NU
GP

1,3. JleZ.

—

— wsle. exec. pL\aSC’.S

\n s’truc:\ftﬁ\/\

A\ .
C U\ C\. < C‘Q*‘ C&\ n S+"UC‘/76V) from Me W)

L_, De_cc&Q_ IN §‘]'(U c‘{'fon
NSO caleulction

Fe‘\' o ngemnés

--- Not all instructions execute every phase.

--- Multiple instructions could be simultaneously in
different phases. (How about same phases?) _'L .
E ye< INsifucilon,

--- Some phases must wait for the previous phase
to complete (eg., memory access) STG QE resu[t"

Harvarc\ Arc,‘r\‘fl'ccjwtj

Processor

IHS'{'ruc lohg éﬂta

| Zmem — | DMEM
. ovtl fb—>
% ADDR Rea ADDR

INSTRUCTION
OuT Fi\b IN
N v a——
—— D’E:/\/ o
\

| —

I~

l
4_,r FSm COh‘I'roL =

—h

 Systew | yon Neumanny
_Systew | von A \ s

hns'llruaL lobs + BG&Q

)
A \‘
Processor l——

T

T

g—

;
= [

(q;&e < \m\m\ Aé\

Dk

STake

FiwiTe cules

Ru\es , Pt

E%@E

¢\

Uwniversa| TM o

Moy
Coll R hew)

Big idea: don't build hardware,
describe it and have it simulated ==

programming.

UTM -
SIMULATING
™
e Spros, P

See stale
See descn. (rule)
Siinulcle w O
Sllhn(//%{ ove Of:

RGMCMLer wl;ere
<mv[dted R/[A[hu \s,

——

Ta pc
JeSc\"lp};&h R\J\fs
of
™
3

< imolctd
%ap@

Eham: Computation is everywhere.
Drah: Where?

: Everywhere!

: A car crash?

: Yes.

: A doll house?

: Yes.

: Me?

: Yes.

: What is the same about them?
: They all change.

: So, computation is change?
: Yes.

: Everything changes, so
computation is everywhere?
/£ E: Yes.

D: What is computation?
D: So, everything changes, and because

Compifitio o
Mcywhm :

OmomomomoOmom

E: Change.

everything changes, everything is

computation, and computation is change.
: Yes! . /'/ZZ,
: Oh.
: You see, it is really quite simple. .

: How simple?
: There is a model.

A model?
- Yes.
: How is there a model?
: Things are one way, then they are /
another. J \

MOMUOMOMOM

\

=0

D: And that means there is a model?
E: Exactly.

D: How do | know there is a model?
E: That is an existence proof.

D: What is?

E: I just said there is a model, didn't [?

D: And a model means things are one
way, then another.

E: Now you've got it.

D: Isn't that the same as change?

E: Quite right.

D: So, a model is change and change is

/ computation and change is computation
)) because there is a model?
E: See, now you're getting the hang of it.

\m{/ O/\" D: Oh.

\u;.w

: So, what is a computer?

: Something that does computation.
: Doing computation?

: That's it, computing.

: So, computers compute?

oOmomomomo

D: I am a computer?

E: Without a doubt. When you change, which you do
constantly, you are computation.

D: Then, I'm not me before, nor me after, but I'm me as |
change?

E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if | don't change?

E: Everything changes.

D: So, there is nothing that doesn't change?

E: That's right, nothing doesn't change.

D: So nothing isn't computation. Does nothing exist?

E: Of course nothing exists. There is zero, zero exists.

: Obviously.
: And computing is change?
: What else could it be?
: Everything changes, so everything is a
computer? '
E: Yes, absolutely. [/
C2

v/

£ @

D: So zero is not computation?
E: Yes, because zero is nothing. If it were something, then

D: But they don't change, zero and one, | mean?

it would be computation, because all things change.
D: So, does one exist.
E: As surely as anything exists, as certainly as zero exists.

E: Of course not.

E: Absolutely.

) D: Then something exists which is not computation?

one.

)

J D: But, if computation is everywhere, where is zero and

E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only one of

them there.

D: So that's the existence of one?
E: What could be clearer?

D: Which part is the one which is not changing, and which
part is the not-one which is changing?

: Everything changes.

: Oh. So, one is computation, too?

: Of course not. Zero plus one, now that's computation.

: Isn't that one?

:Yes.

: Did it change?

: Did what change?

: Well, the zero or the one, or something.

: I have no patience for this. Numbers cannot change,
they just are. Addition is a mapping, not change.

D: So, addition is not computation because nothing
changes?

E: Don't be silly. If anything is computation, then addition is
Haven't you ever used a computer?

D: Yes, | guess.

E: I think you need to take more computer science classes
so you will know something about computing. Then we can
talk again. Run along now.

D: Thank you, professor Eham.

moOomomomom

