Lec-4-vonNeumann

What we are looking for
-- A general design/organization
-- Some concept of generality and completeness
-- A completely abstract view of machines
a definition
a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene, listen to
Dave Patterson:

Computer Architecture is Back:
Parallel Computing Landscape

http://www.youtube.com/watch?v=0n-k-E5HpcQ
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We need a language rich enough to describe
any function, then we can describe any

machine, and simulate it.
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NB--It's not obvious what capabilities we need. Memory can be thought of as
Lhal ¢ (se.

Can we find a model that could tell us that? an array, the address is the
- array index:
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recreate a branched graph in
linear memory. Execution follow
path through graph.
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Need some way for the machine to "know"
what the outcome was.
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MAR, memory
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PHASE:

Fetch instruction
-- 1st step, state F-1

PC <==PC+1
MAR <== PC

(Happens in parallel,

finalized when clock
pulse arrives.)
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SYSCLK

OuT which memory
cell is accessed.

MDR, memory

data register:
R/w

| data sent to, or
received from
memory.

Machine Cycle

C)(ecu'l"m'n Fetch instruction
A Decode instruction
P 45€51  Evaluate address
Fetch operands
Execute instruction
Store result

FSM
Controller Stale

. Con rc]
GatePC =1 . \
Lofe =1 S15nels

pemux = 10

Lp.MAR =1



wer [

ﬁ:e\‘c\;, F'-L

_—

Cotrellen_STeTe s

Pro (e s50R

Bvs

Rdy=©
Frowm, Fy

— _
£ L MAR
1234
L S1Sak

LD _MDR

PHASE: Fetch instruction, --2nd step, F2
MDR <== Mem.out

Memory word selected by MAR is copied
into MDR, when memory is ready.
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PHASE: Fetch instruction, 3rd step, F3

IR <== MDR

Instruction is remembered, ie., "registered".
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~— on opcode bits:
imsteochion word 0001 = ADD-1
: 0110 = LDR-1
LS hbﬁ‘ T 1100 = JMP-1
evel . A&lr“ PC
(1% needed) TR

Evaluate Address

Sources for address calculation are
any machine registers:

IR

any of 8 registers in RegFile
PC

Interrupt Vector Register

calculated address is used to access memory to,
(1) get next instruction: JMP, BR, INT, TRAP, Exception
or

(2) transfer data between memory and register: LDR, STR
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Fetching could mean,
| 1. move from memory to register

or
2. make available to ALU

LC3's "load from memory" instructions do nothing else but
copy from the MDR to a register; ie., no further phases.
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Execution could mean,

1. Performing ALU operation and making result available
2. Load PC with address calculated in Address Calc. Phase.



LC-3 | 2., 4

<STOR E; p&\ASC ‘

Store could mean, Rej R@j oV €
1. copy from a register into memory ﬁ'\ {g,

2. move ALU result to register

3. move ALU result to memory l '/.}

4. copy from one register to another

For LC3, ALU result always goes to register. 1 .
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--- Not all instructions execute every phase.

--- Multiple instructions could be simultaneously in
different phases. (How about same phases?) _'L .
E ye< INsifucilon,

--- Some phases must wait for the previous phase
to complete (eg., memory access) STG QE resu[t"
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Big idea: don't build hardware,
describe it and have it simulated ==

programming.
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Eham: Computation is everywhere.
Drah: Where?

: Everywhere!

: A car crash?

: Yes.

: A doll house?

: Yes.

: Me?

: Yes.

: What is the same about them?
: They all change.

: So, computation is change?
: Yes.

: Everything changes, so
computation is everywhere?
/£ E: Yes.

D: What is computation?
D: So, everything changes, and because

Compifitio o
Mcywhm :

OmomomomoOmom

E: Change.

everything changes, everything is

computation, and computation is change.
: Yes! . /'/ZZ,
: Oh.
: You see, it is really quite simple. .

: How simple?
: There is a model.

A model?
- Yes.
: How is there a model?
: Things are one way, then they are /
another. J \

MOMUOMOMOM
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D: And that means there is a model?
E: Exactly.

D: How do | know there is a model?
E: That is an existence proof.

D: What is?

E: I just said there is a model, didn't [?

D: And a model means things are one
way, then another.

E: Now you've got it.

D: Isn't that the same as change?

E: Quite right.

D: So, a model is change and change is

/ computation and change is computation
)) because there is a model?
E: See, now you're getting the hang of it.

\m{/ O/\" D: Oh.

\u;.w



: So, what is a computer?

: Something that does computation.
: Doing computation?

: That's it, computing.

: So, computers compute?

oOmomomomo

D: I am a computer?

E: Without a doubt. When you change, which you do
constantly, you are computation.

D: Then, I'm not me before, nor me after, but I'm me as |
change?

E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if | don't change?

E: Everything changes.

D: So, there is nothing that doesn't change?

E: That's right, nothing doesn't change.

D: So nothing isn't computation. Does nothing exist?

E: Of course nothing exists. There is zero, zero exists.

: Obviously.
: And computing is change?
: What else could it be?
: Everything changes, so everything is a
computer? '
E: Yes, absolutely. [/
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D: So zero is not computation?
E: Yes, because zero is nothing. If it were something, then

D: But they don't change, zero and one, | mean?

it would be computation, because all things change.
D: So, does one exist.
E: As surely as anything exists, as certainly as zero exists.

E: Of course not.

E: Absolutely.

) D: Then something exists which is not computation?

one.

)

J D: But, if computation is everywhere, where is zero and

E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only one of

them there.

D: So that's the existence of one?
E: What could be clearer?



D: Which part is the one which is not changing, and which
part is the not-one which is changing?

: Everything changes.

: Oh. So, one is computation, too?

: Of course not. Zero plus one, now that's computation.

: Isn't that one?

:Yes.

: Did it change?

: Did what change?

: Well, the zero or the one, or something.

: I have no patience for this. Numbers cannot change,
they just are. Addition is a mapping, not change.

D: So, addition is not computation because nothing
changes?

E: Don't be silly. If anything is computation, then addition is
Haven't you ever used a computer?

D: Yes, | guess.

E: I think you need to take more computer science classes
so you will know something about computing. Then we can
talk again. Run along now.

D: Thank you, professor Eham.
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