

 $if P_1 \longrightarrow \dots i13 i12 i11$ $if P_2 \longrightarrow \dots i23 i22 i21$ SPMT **R02 R**12 **R**01 **R**11 data: ... D3 **D**₂ **D**₁ instruction parallel •••• ••• **i03 i**13 **i02 i**12 **i**01 Multi-Instruction, Single Data **i**11 OP OP MISD ⎷ ⋠ **R**03 **R**13

R22

R21

SISD

HW Serial

٥p

٥p

HW parallel

op

op

SIMD

ρ

Program 0

Program 1

SW serial, concurrent

Program

SW serial,

sequential

SW serial: single instruction stream SW sequential: single-process

HW serial: non-parallel execution

Data serial:single data streamData sequential:single-source

SW serial: single instruction stream SW concurrent: multi-process

HW serial: non-parallel execution

Data serial:single data streamData sequential:multi-source

SW serial: single instruction stream SW sequential: single-process

HW: parallel execution

Data parallel: multi-data stream Data sequential: single-source

Datao

Data,

Data

data parallel,

data serial

Speculation, nullifying

 \equiv

Ω 8×4 interconnect

also, can broadcast:

Packet overhead

Headr cargo ~8 B 4-64 B HT Transaction / data link / physical

tow Latency response

Shared Memory

Switch context

Hardware support for multiple threads

ALL THREADS from SAME PROCESS

- --- Duplicate and switch: PC, PSR, RegFile, Stack, Private data
- --- Copy/Save/Restore state
- --- Shadow registers, renaming
- --- TLB content (separate page tables? or shared?) --- hardware switch: thread ID labeled (TID)
- --- MULTIPLE THREADS from MULTIPLE PROCESSES: PID + TID
 - --- Larger state to consider (page tables, file and IO tables and buffers) --- Page Tables
 - --- File and IO tables and buffers
 - --- TLB and Cache content

OS policy not known to HW designer?

 \mathcal{M}

(Simultaneus)(Hyper) Threading

more ==> parallelism

T2 Т3 T_1 TI Τ0 NOP TO Τ2 NOP TI TI TI Τ3 Τ2 TI NOP Τ3 Т3 Τ2 72

time

A. · /

Single threaded execution

Multi-tasking

- ---- Multiple concurrent execution (not simultaneous)
- ---- Memory shared but separate (virtual)
- ---- CPU time-multi-plexed --- cooperatively, pre-emptively, IO
- ---- Process context switching drain/fill (pipes, caches, TLB, ...)
- ---- Extract ILP from single stream ---- Unused issue slots
 - ---- pipeline bubbles/stalls

Credits: Introduction to Multithreading, Superthreading and Hyperthreading By Jon Stokes

SMP, Symmetric Multi-Processing

- ---- Context switch per CPU
- ---- Simultaneous execution --- multiple programs/processes/threads
- ---- ILP extracted per process
 - --- double silicon resources
 - --- same NOP density
 - ==> Could speedup be > 2?

Single-threaded SMP

Multi-Threaded (Superthreading)

- ---- Concurrent process scheduling
 - --- process context switching
 - --- cooperative, pre-emptive, ...
- ---- Single process, multiple thread execution
- ---- Time-multiplexed thread scheduling --- from same thread
- ---- Instructions issue from single thread
 - --- thread context switch
 - -- in HW
 - -- per stage
 - -- across stages
- ---- Execution slots filled
 - --- due to stalled threads
 - --- filled from non-stalled threads
 - --- Lower density of NOPs

SMT, Simultaneous Multi-(Hyper)-Threading

- ---- Concurrent Processes --- context switching
- ---- Thread context switching
 - --- independently on different pipes
 - --- issue from multiple threads simultaneously
- ---- Average ILP = 2.5, empirically
 - --- max single-thread issue = 4 (here)
 - --- combined ILP ==> 4
- ---- Logical Processors == 2
- ---- Lowest NOP-density

Modification of existing 0-0-0 CPU => 10% added cost, p >2

what for? 16-bit sound DSP? Intel MMX => added to ISA: larger 1) Vectors (more elements) 2) elements (more bits)

