
OP1
OP2
BR T
OP4
T:
OP5

OP6 L:OP5 OP4 BR L OP2 OP1

Search table for A? Too slow
Index using A?
 ==> table size? Too big

Index using A[7:2], e.g.?
 ==> 64-entries: Fast lookup
 ==> incomplete: Collisions
 ==> don't store A: Small table

count == 0
entry into loop:
 Predict-taken = 0, WRONG (nullify instr.), count <== 1
last iteration:
 Predict-taken = 1, WRONG (nullify instr.), count <== 0

first entry: count <== max/2 (+e)
next k BR's:
 Predict-taken = 1, count++
last iteration:
 Predict-taken = 1, WRONG (nullify instr.), count--
next entry into loop:
 Predict-taken = 1, count++

Some other influences to consider:
--- Multiple threads of execution? Multiple processes?
 --- Different states.
 --- Different prediction tables?

Looking for independent instructions.
Schedule to avoid stalls.

Speculate that SW and LW are independent.
Reorder freely.

HW: Check addresses at runtime: where they
independent? If so, fix.

SW: Insert code to check, and code to do the
fixing up if wrong.

Reorder code to avoid Load-Use stalls.

Reorder code to avoid BR bubbles.

Reorder code into delayed BR slots.

Rename registers to avoid false dependencies.

Instruction
Fetch
Buffer

OP0
OP1
OP2
OP3
OP4
OP5
OP6

OP1 OP3

OP4 OP2

 OP0

OP5

ADD

LW

L:
$1 <== A[$2]

$1 <== $3 + $1

A[$2] <== $1

$2--

until($2 == 0)

$1 <== A[$2]

$1 <== $3 + $1

A[$2] <== $1

$2--

$1 <== A[$2]

$1 += $3

A[$2] <== $1

$2-- ...

Independent except that same register is
used ($1). Compiler can rename to exploit
existing ILP.

Data dependencies exist ($1) between three instructions.
Cannot schedule out-of-order nor in parallel. (Also $2
dependency across loop iterations.)

L:
 LW $1, 0($2)

 ADD $1, $1, $3

 SW $1, 0($2)

 ADDi $2, $2, -4

 BNE $2, $0, L

Unrolled loop shows "naming
dependency", aka, "anti-dependency"

$1 <== A[$2]

$4 <== A[$2 - 4]

$1 <== $3 + $1

$4 <== $3 + $4
 ...
$2 <== $2 - 8

Loop

L:

 LW $1, 0($2)

 LW $4, -4($2)

 ADD $1, $1, $3

 ADD $4, $4, $3

 SW $1, 0($2)

 SW $4, -4($2)

 ADDi $2, $2, -8

 BNE $2, 0, L

Static issue,
Instruction pairs issued together

Compiler scheduling

Can we fill w/ useful operations?

How do we discover ILP to build VLIW instructions w/ few NOPs?

How big is a program?

integer
ADD
SUB
OR

Load
Store

integer
MULT
DIV

float
SUB
ADD

float
MULT
DIV

Some operations take a long time (FP divide, e.g.)

Let other, non-dependent instructions flow by in
parallel.

In-order issue, out-of-order completion.
What to do with multiple completions in same cycle?

What about forwarding between units?

How to keep track of dependencies?

Multiple pipelined functional units.
Same issues as above,
 plus
pipeline hazards.

Multiple functional units

Could have combination
 pipelined
 and
 non-pipelined, multi-cycle units.

instruction
pretech,
branch
predictioninstruction

 buffer

Memory

data
prefetch

data
read/write
buffer

instruction
reservation
station

Register
File

pipelined
INTEGER
Arithmetic

pipelined
FP
ADD

pipelined
FP
DIV

Tag and
ISSUE

COMMIT
buffer

COMMIT

Match and
schedule

instruction
reservation
station

instruction
reservation
station

Super-Scalar OOO
speculation
dependency analysis
dataflow scheduling
out-of order execution
data fowarding
in-order commit
nullification

In general ILP:

--- Dataflow approximation
--- discover instructions to run in parallel (arch, compiler, programmer)
--- handle data dependencies
--- hide latencies due to control dependencies

Tagging to match
register content w/
operation.

Renaming registers to
avoid false
dependencies.

Forwarding per
dataflow.

Evaluating addresses
to check on
dependencies.

HW Speculation

--- Keep track of traces (cache).

--- Speculate on taken trace (nullify as needed).

--- Execute multiple traces in parallel (nullify as needed).

SW Speculation

--- Rewrite code with multiple traces.

--- Add code to undo bad speculation.

--- Profile benchmarks to pick most probable trace as first executed.

