
Instruction-Level Parallelism

--- A single job (program/thread)

--- Execute multiple instructions simultaneously

--- As many as we can

--- w/ minimal added hardware

Complex System Design

--- Modularity

 --- simple functions w/ guaranteed behavior

 --- simple interfaces w/ good abstractions

--- Heirarchical composition

 --- low-level complexity is hidden

 ===> 1 billion components that work!

--- Reusable building blocks

--- Generally applicable

--- Customizable

--- Isolation allows evolution

or memory

 R-format

ADD Dest, SRC-1, SRC-2

 I-format

ADD Dest, SRC-1, immed.

BR SRC-1, SRC-2, offset

LW Dest, offset(SRC-1)

 J-format

JMP immed.

Execution Phase Uses this HW
--- --

--- Fetch Instruction, PC++ --- IMem, PC

--- Read Registers, Decode --- RegFile, Control decoder

--- Execute ALU operation --- ALU + PC
 Execute BR/JMP operation --- ALU + PC

--- R/W Data Memory --- DMEM

--- Write register --- RegFile

skews the start of critical path delay for some path.

(We can squeeze more range out of offsets: ignore low 2-bits for instruction addresses.)

PC[31:28]

IR[25:0]

00

Low 2 bits always 00: ignore them; Upper 4 bits == (x8, super mode) or (x0, user mode)

JMP anywhere within either OS or USER space.

encode ALU's operation for:
--- r-format arith/logic
--- i-format arith/logic
--- LW, SW address arith

efficiency
1. fewer bits to ALU mux
2. fast response

ROM is turned sideways.
This is just a portion of decode ROM and ALU control decode ROM.
6-bit FUNC ===> 64 arith/logic operations per opcode for R-format instructions.
"ADD" is 3-bit code to select ALU's output to be ADD.

Single-Cycle MIPS Processor Summary

---- Advantages

 === Simple control logic

 === All instructions execute in 1 cycle (CPI = 1)

 === minimal hardware

--- Disadvantages

 === Each component is idle most of the time as wave of logic signals traverse entire circuit.

 === Cycle time is sum of component delays ===> very slow CR.

 === Slowest instruction (LW) determines CR for all instructions.

 ADD AND NOR MOV (pass through), opcodes: 0000, 0001, 0010, 0011
 instr[15:12] instr[11:9] instr[8:6] instr[5:3] instr[2:0]
 OPcode SR1 SR2 DST unused (ALUk == low 2 bits)

 ADD R3, R1, R2 ;--- R3 <=== R1 + R2 [0000 001 010 011 xxx]
 MOV R3, xx, R2 ;--- R3 <=== R2 [0011 xxx 010 011 xxx]
...
LDR STR, opcodes: 1001, 1010
 instr[15:12] instr[11:9] instr[8:6] instr[5:0]
 OPcode baseR DST/SRC offset (ALUk == 2'b00)

 LDR R2, R1, x7 ;--- DMEM[R1 + x7] ===> R2 [1001 001 010 000111]

...
LEA LIM, opcodes: 1011, 1100
 instr[15:12] instr[11:9] instr[8:6] instr[5:0]
 OPcode unused DST offset (ALUk == 2'b00, 2'b11)

 LEA R2, PC, x7 ;--- R2 <=== PC + x7 [1011 xxx 010 000111]
 LIM R2, xx, x7 ;--- R2 <=== x7 [1100 xxx 010 000111]

...
BRR, opcode: 1111
 instr[15:12] instr[11:9] instr[8:6] instr[5:0]
 OPcode baseR CND offset

 BRR R2, R1, x7 ;--- PC <=== R1 + x7 [1111 001 010 000111]
 (taken if R2 < 0)

