
Fast access
===> use map to find object

HW == SW
===> map is in HW or SW or combo

Extend range
===> longer, hierarchical names

How is map embodied:
--- L1?
--- Memory?

Big blocks : spatial locality
Big cache : lower miss rate
Associative : lower miss rate
Write back : less bandwidth
Multiple levels : lower avg penalty

The Environment

---- Long Latency
---- Low Bandwidth

Why Mapping/Translation?

--- Multiple Programs

--- Program written w/o knowing
 where it will be in memory

--- OS moves programs around

--- Problem w/ physical memory:
 relocation == load editing?

Segment register could point
anywhere in memory

MAR content is address
relative to Segment register's
pointer.

Swap Segment register's
value ===> Switch to new
memory area

Programs both "live" in own
space, but each "thinks" its
space starts at address 0.

Names: memory addresses (as before) and disk
addresses;
Objects: data/instruction "pages" (the same, but bigger
than cache blocks)

A name is a key to look up its location,
Mapping: key ===> location

A NEW WAY (equivalent to above)

 TAG/pointer table:
 an entry for every possible tag

 TAG == block address == index
 ===> eliminate TAG column!
 ===> no TAG search!

 cache block == VM Page
 pointer table == Page Table
 cache data == Disk/Memory Page

separate into
two parts

Page Table issues

--- Where, physically?

 memory? SRAM? Hardware?

 table in memory?
 how many memory accesses to read a word? (ignoring L1, L2, ...)

--- Page Tables R/W?

 program rewrites page table (accidentally)?

 not R/W? how to store pointer values?

 ===> protection bits per page: Kernel Mode: R/W, User Mode: not R/W
 ===> Where are bits? How accessed?

--- Share physical memory?

 interleaving: long latency, do other work.
 OS has work to do, too.

--- I/O?

 use virtual addresses? Memory mapped device registers?
 long, slow I/O for disk blocks (pages)?

A. Send command to DMA CTL
B. DMA CTL acts like PROC

 DMA does 1, 2, 3 in loop;
 gets BUS via BUS MASTER.
 PROC does other work (interleaving).

BUS-MASTER interleaves PROC and DMA requests

All User Page Tables map OS identically.

OS turns off VM translation to directly access physical memory.

After mapping,
page tables can be in
any frame.

Switch from Prog1 to
Prog2 does not
change OS mapping.

x00000000

xFFFFFFFF

x00400000

x800000000

PTBR set by OS,
fast PTE lookup.

Speed it up:

1. PTBR <== Page-table-location-pointer
 Do this once at program startup

2. Cache PTEs!

LW $7, x00040000

0004 0000

LW $1, Page-Table-Location-Pointer ;-- get addr of PT

LW $2, 4($1) ;-- get PTE

LW $7, 0($2) ;-- get data

W: modified <=== 1

R/W: accessed <=== 1

k ticks: accessed <=== 0

Page Miss:
 --- evicted page (order of preference):
 ---- 1. dirty == 0, accessed == 0
 ---- 2. dirty == 0, accessed == 1
 ---- 3. dirty == 1, accessed == 0
 ---- 4. dirty == 1, accessed == 1

Fully Associative Cache for PTEs
Page # == TAG
Data == Physical Frame #
 valid bit
 LRU bits, ...

 Read Mem for PTE
 Load TLB, translate,
 send to frame# L1

Google File System

#(N-bit Byte addr)

#(Bytes / page)

Is PT same size as before?
How do we save space with this?

Do collisions bother us? Typically, how many?

Is this scheme to slow?

Why? When does this happen?

How many instructions are involved anyway?

Where is the real Page Table anyway?

Do we need one?

TLB Tag TLB index page offset

Frame number page offset

cache Tag offsetcache index

P6 2-level Page Table,

Programs P1 and P2:

Read PDE, find PT disk address; Read PT page from disk; Restart; (after restart: Case 1/1)

Possible Scenarios for Locations of Pages containing PD, PT, Data

Page fault for PT as in case 0/1; Restart; (after restart, becomes Case 1/0)

E.G. Simple DM cache (virtually tagged and indexed)

--- Page-offset is untranslated, PAGE# is translated

--- Use part of virtual address as tag
 (Page No. + or - some bits)

--- Use some translated VM bits for index
 (remainder is block offset)

--- Include PID, Accessed and Dirty bits, etc., in cache

--- Only translate on misses
 ===> cuts TLB from critical path

--- L2 is a physically indexed and tagged cache

Process 1 writes

Process 2 reads
incorrect data

Shared page
PT1: Mapped from V-Page x1234
PT2: Mapped from V-Page xFFFF
Both Map to frame x5678
(Cache data blocks are pages)

Goal: enforce an invariant so that,
--- Shared data is present once, at most.

(Could also be multiple mappings
in same page table.)

page offset bits as index
===> un-translated

Compare Page# in TLB in
parallel w/ cache access.

Form physical address using
frame# + offset.

Compare tag from CMAR.

"Virtually Indexed, Physically
Tagged"

Originally

No limit checking
 ---- can overrun segment

No protection
 ----- can write segment registers

Segment registers implicit
 ----- instruction fetch: uses CS
 ----- data access: uses DS
 ----- stack operation: uses SS

Programmer's perspective:
 ---- Segment's address is 0
 ---- Offset is address

Seg Reg is offset into table
---- Entries are descriptors
Too Slow? Fix it:
---- extend Seg Regs
---- cache Descriptor
 in extended Seg Reg
---- Check limits, PID, R/W, ...
Also:
---- Special Segs for Calls
---- "conforming" ==> change mode
---- 8k segments @ 4GB

Flat Addressing:
---- set all Descriptors:
---- BASE == x000000000
---- LIMIT == xFFFFFFFF
---- 1-to-1 w/ 32-bit MAR

---- Seg Selects can be written

 writing CS, DS, SS: changes segments
 But, via selecting different segment descriptors in table

 Descriptor table is OS controlled.

---- Also available in IA-32 (x86)

 Paging mode (2-level and 3-level)

 "Real" mode (all physical 20-bit address w/ 16-bit segment + 16-bit offsets)

 Paged Segments paging + segmentation:

 Segment Descriptor points to Page Directory

Reference:
http://pdos.csail.mit.edu/6.828/2005/readings/i386/s05_01.htm

---- Simulated machine is arbitrary
 Just write a program to model
 virtual machine's hardware/ISA

--- Virtual Machine (VMa or Guest)
 defined by simulator program.

--- VMa's resources are
 simulator's data structures.

--- VMa interacts with external devices
 through simulator's actions.

--- Host OS provides
 --- services: I/0, cpu time, ...
 --- isolation, protection
 --- simulator is a user process

--- Monitor provides Mapping
 Virtual Machine (VMa)
 ===> partitioned resources

--- Monitor is small, simple, reliable

--- Each guest runs in its own VMa

--- Guest instructions run w/o emulation
 Guest code is in HW ISA

--- Each VMa has its own OS
 manages resources separately
 --- processes
 --- memory
 --- disk space
 --- cpu scheduling

Advantages

--- Monitor-1, Monitor-2
 identical virtual machines
 Host HW can be different (degree?)

--- Guests Isolated
 VMM is safer than OS
 Bugs/Attacks limited to one VMa

--- Guest migration, Multiple guests
 ===> bulk efficiencies:
 shared computing resources
 uptime
 load balancing

--- Legacy apps ===> Legacy VMa.

--- Guest OS configuration
 matches guest's apps

--- Different OS per Guest

--- Checkpointing
 Suspend/restart/rollback

--- Virtualizable if:
 1. Can execute directly on HW
 2. VMM controls resources

--- Monitor runs in kernel mode

--- Guest runs in user mode

 ===> privileged instructions
 trap to monitor's handler

OR

---- Binary translation (static or runtime):
 Replace problematic instructions

OR

---- Add new hardware modes.

x86 eFLAGS register,
like LC3's PSR:

--- N, Z, P
--- Overflow
--- Carry
 ...
--- Interrupt Enable
 ...

POPF

All 32-bits written

IE bit not written

vmkernel:
--- boot loader
--- x86 abstraction
--- IO stacks (storage, network)
--- memory scheduler
--- cpu scheduler

VMM (vmkernel priviledged process):
--- Trapping, translation
--- one per VM

XEN

New ISA ===> Rewrite the OS*

---- more instructions run w/ VMM
 ===> faster, less trapping
 ===> no dynamic translation

But

--- can't run original OS binaries
===> keeping up w/ the Joneses?

Trap references to page tables
 --- write protect guest PT

Adjust physical frame number
 --- use shadow page table

OR

Add HW second layer translation
(1960's IBM 370 solution)

How much overhead in a page miss?

G-OS: page fault, context switches, 100s of cycles
VMM: examine G-PT (find G-PA), 100s of cycles
VMM: find H-Phys-Addr, 100s of cycles
VMM: allocate/fill shadow PT 100s of cycles

--- kicks out needed data from cache

--- stalls processor

--- Cache data may be stale

Fix it:

---- Make buffer pages non-cacheable
 Too restrictive?

---- Invalidate cache blocks belonging to
 buffer just before IO?
 Lock pages in memory temporarily.

Read X
X <== X + 5
Write X

Read X
X <== X + 3
Write X

CPU-1

cache <== 2
cache <== 7
X <== 7

CPU-2

cache <== 7
cache <== 10
X <== 10

