
(1.) C multi-dimensional arrays are stored in row-major order. For example, the n-row by m-column array A would 

be stored in memory as (smaller memory addresses to the left),

    A[0][0], A[0][1], ... A[0][m-1],    A[1][0], A[1][1], ... A[1][m-1],    ...    A[n-1][0], A[n-1][1], ... A[n-1][m-1]

Thus A[k] references an m-element linear array. Here is a bit of C code ("8k" is shorthand for 8192):

    int A[8k][8k], B[8k][8k], x, y;

    for (x = 0; x < 8k; x++) {
        for (y = 0; y < 8; y++) {
            A[x][y] = B[y][0] + A[y][x];
        }
    }

Q.1.a. Suppose our cache has 16B blocks and 32-bit ints. How many words (ints) per cache line? 

Q.1.b. Suppose the code above executed. How many cache blocks were accessed in writing to A[][] (the 
LHS of the inner loop)? To get started, a diagram of A[][] is shown below as a block of rows and columns. 
Show the dimensions of A and the part accessed by the LHS. Indicate the access order.

Q.1.c. Do the same for B. How many blocks were accessed?
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Q.1.e. Of all memory references for A and B, which have temporal locality when the time window is 8 
iterations of the inner loop? When the time window is the entire execution? Which have spatial locality?

Q.1.d. Show the part of A accessed on the RHS. How many blocks were accessed?  Indicate the access 
order. 



Q.2.a. For each cache, show which references are hits and which are misses, how many words were 
transfered between cache and memory in total, and the total access time. Which is better?

(2.) Following is a sequence of word-sized memory references (32-bit addresses, 32-bit words, word-addressable). 

Only the low-order 16 bits of each address is shown: assume the most-significant16 bits are 0x0040.

    0x0001, 0x0134, 0x0212, 0x0001, 0x0135, 0x0213, 0x0162, 0x0161, 0x0002, 0x0044, 0x0041, 0x0221

Suppose we have three direct-mapped cache designs:

(C1) 8 1-word blocks, miss penalty = 25 cycles, hit access time = 2 cycles.
(C2) 4 2-word blocks, miss penalty = 25 cycles, hit access time = 3 cycles.

(C3) 2 4-word blocks, miss penalty = 25 cycles, hit access time = 5 cycles.



(3.) Suppose a direct-mapped cache uses its address bits in the following way:

ADDRESS[31:10]     ADDRESS[9:4]   ADDRESS[3:0]
        tag                           index               offset

The memory is byte-addressable.

Q.3.a. What is the cache block size in 32-bit words? How many lines does the cache have?

Q.3.b. In total, how many data bits does the cache hold (assuming all entries are valid)? In total, how many 
bits of storage does the cache require? What is the overhead for tag storage as a percent of data storage?

Q.3.c. Suppose we alter the cache to be 8-way set associative without changing its overall data 
storage size or the size of cache blocks. Show the usage of address bits.



Q.4.a. Write the portions of the cache controllers' algorithms that handle an L1 write miss. This code 
specifies a portion of both L1's and L2's FSM controllers. Use dot notation for signals, e.g., L1.READY, 
L2.READY, and so on, with the left-side indicating the signal's sender (e.g., L1 sends READY to PROC and 
L2 sends READY to L1). Describe your controllers as high-level psuedo-code, or as a logic flow chart, or as 
a FSM state transition diagram, or any combination of these. Assume L2 hits.

(4.) Suppose we have a 4-way set-associative L1 cache (write-back, allocate) and an 8-way set-associative L2 cache 

(write-through, no-allocate). Both have write buffers. L1's write buffer passes its writes to L2. Both have the same 

block size. The interfaces between both caches, memory, and the processor communicate using the same set of signals, 
VALID, ADDR, DATAin, DATAout, RW, and READY; e..g., shown below between PROC and L1.



(5.) Suppose program P running on system S has the following behavior: per 1000 instructions executed, data reads = 

180, data writes = 120, and cache miss rates are MRinstuctions = 0.2% and MRdata = 2% for both read and write misses. 

CPI = 1 (which includes cache hit time) except when there is a stall to access memory. To transfer a cache block to or 

from memory requires t cycles per word plus a latency of 10t cycles. A single word access takes 10t + t cycles. 

Instruction and data are 32b words; cache blocks are 16B. S's cache is write-through, allocate on write miss, and does not 

have a write buffer.

Q.5.b. On average per 1,000 instructions executed, how many words of data are written to memory? 
How many cycles are needed for these memory accesses?

Q.5.e. On average per 1,000 instructions, how many instruction fetches miss? What is the average 
instruction-fetch read traffic to memory (measured in blocks and words)? How many cycles does this 
contribute to program execution time?

Q.5.c. Data-write misses must allocate and fetch a block. What is the average data-read traffic for this 
(measured in blocks and words)? How many cycles needed?

Q.5.a. What is the size of a single data write operation to memory (in words)? How many cycles does this 
require? What is the size of a single data or instruction read operation from memory (in words)? How 
many cycles does this require (in terms of t )?

Q.5.d. Data-read misses must allocate and fetch a block. What is the average data-read traffic for this 
(measured in blocks and words)? How many cycles needed?

Q.5.f. We want S to have an overall CPI of 2. Show an upper bound on t. S's clock rate is 2 GHz. What 
is the required memory bandwidth in B/sec?



Q.5.g. A modified version of S, S1, adds a write buffer. Does S1 have more or less or the same total 
traffic to memory as S?

Q.5.h. Suppose all writes are overlapped with instruction execution: Instructions always execute 
without stalling whenever the write buffer is busy writing data to memory. Put another way, a cache 
miss never occurs while the write buffer is busy. Of course, write misses still incur the same penalty as 
before to read in a block. Per 1,000 instructions executed, how many cycles are now required to 
execute the program.

Q.5.j. To have a CPI = 2, what memory bandwith is required for S1? 

Q.5.i. What is the speedup of S1 relative to S?

Q.5.k. A modified S1, S2, has a write-back cache instead of write-through. For program P running on S2, 
25% of evicted cache blocks are dirty (modified). Write misses that have to evict a dirty block write the 
evicted block to memory. What is the data-write traffic for this new system?

Q.5.l. What memory bandwidth does S2 need to have an average CPI of 2?



(6.) Systems S1 and S2 both have a memory access time of 70 ns. Job J has 36% memory accesses for data. The 

miss rate for J with a 1kB cache is 11%, with a 2kB cache it is 8%. S1's L1 cache is 1kB and access time is 0.62 ns; 

S2's L1 cache is 2kB with access time of 0.66 ns.

Q.6.a. What is the fastest possible clock rate for S1? for S2?

Q.6.b.  What is the average memory access time for S1 when running job J? for S2?

Q.6.c. S1 and S2 both have an average CPI = 1, ignoring memory stalls. What are their CPIs when 
running job J?

Q.6.d. A modified S1, S1', adds a 1/2 kB L2 cache with access time = 3.22 ns. Running Job J, the L2 
miss rate is 2%. For job J, what is the speedup of S1' relative to S2?



Q.7.a. What is S's CPI with only an L1 cache?

(7.) System S running a particular job has these characteristics: 

    CPI = 2 (w/o memory stalls), CR = 2 GHz, memory access time = 125 ns, MRL1 = 7%. 

We are considering two different L2 caches for S,
    L2a: direct-mapped, access time =15 cycles, MRglobal = 3%. 

    L2b: 8-way set associative, access time = 25 cycles, MRglobal = 1.8%.

Recall that MRglobal is the percentage of total memory references that result in a main memory access. 

Q.7.d. Suppose S's new memory is twice as fast, which configuration is best?

(8.) System S has virtual memory with 4kB pages, 4-entry fully-associative TLB, true LRU replacement. Physical 

memory that holds is single page is called a page "frame".

Q.8.a. For the sequence of memory references below, the initial TLB content, and the initial page table 
content, show the final page table, TLB, and for each reference whether it is a TLB hit, a page table hit (page 
in memory), or a page fault. TLB entries are [valid, tag, #frame]; PT entries are [1, #frame] or [0, d], 
depending on whether the page is in a physical frame or not (if not, d is some disk address).

Memory references: 4095, 31272, 15789, 15000, 7193, 8912

TLB: [1, 11, 12], [1, 7, 4], [1, 3, 6], [0, 4, 9]
PT: [1, 5], [0, d], [0, d], [1, 6], [1, 9], [1, 11], [0, d], [1, 4], [0, d], [0, d], [1, 3], [1, 12]

If a page must be brought in from disk, assume the free frame with the smallest frame number is used.

Q.7.b. What is the CPI with L1 and L2a?

Q.7.c. With L1 and L2b?

Q.7.e. What if its CR also quadruples?



(9.) System S has 64b virtual addresses, 16 GB physical memory, 8 kB pages, 8B PT entries.

Q.9.a. For a single-level page table scheme, how many page table entries in a page table? How much 
physical memory would the page table require?  What would be the minimum page size to make a 
single-level page table scheme practical?

Q.9.b. If we instead use a multi-level page table, with each an 8kB page directory and 8kB sub-directories 
and sub-tables. That is, each piece of the multi-level page table data structure fits into an 8kB frame. How 
many levels would be required?



(10.) In the following, a series of memory references are sent to a 2-way set-associative cache. The cache is 

initially empty (all entries invalid). The initial sequence of block addresses is {0, 1, 2, 3}. They all miss and have 

the corresponding cache block brought from memory {mem[0], mem[1], mem[2], mem[3]. The cache content 

after these accesses is shown. Block addresses are in hex.

Q.10.a. The following sequence of block addresses (hex) is sent to the cache. Replacement is LRU: 
The block whose time of last access is oldest is replaced. Show which are hits.
{4, 0, 2, 8, 10, 12, 14, 16, 0, 1, 3, 5, 1, 3, 1, 3, 5, 3}.

Q.10.b. Suppose you knew ahead of time the entire sequence of addresses sent to the cache. 
Which block would you replace each time? That is, what blocks would be evicted and replaced to 
give the best performance?

(11.) Consider a job J running on a machine G has these characteristics:

I/O traps:                                                        30 (per 10k instructions executed)
Traps to priviliged OS mode for non-I/O:          90 (per 10k instructions executed)
Cycles to switch to OS mode per trap:            15 cycles per trap
Average CPI w/o mode switching overhead:    1.5 cycles per instruction
(that is, the CPI for all instructions executed if no mode switches occurred.)
I/O access delay time (w/o trap overhead):      1k cycles per I/O

Q.11.a. What is the CPI for G running job J?

Q.11.b. Suppose we run G virtually on a Virtual Machine Monitor (VMM). G executes its instructions 
natively on the host hardware (instructions are not simulated/emulated). G runs in user mode, so each 
trap causes a mode exception trap to VMM. VMM handles the priviliged instruction execution itself, 
then returns control to G, which adds 175 cycle per mode switch. I/O traps also incur this switching 
overhead, but the I/O delay time is the same as if G were running w/o VMM. What is the CPI now?


