
Q.  At right is the multiplier unit of a 4-bit machine (4-bit 

x and y). MULT has its own local clock, CK, to control 

its shift-add cycles, which is started by sys_clk  if the 

current opcode is MULT. In each CK cycle, the adder 

performs a partial sum, x shifts left, y shifts right, and the 

partial sum clocks into the 8-bit result register, S.  MULT 

is considered to start operating just after x and y are 

clocked into their respective registers, and finishes just 

after the final result is clocked into S. The ADDER is a 4-
stage, ripple-carry adder with a delay per stage of 4 ps. 

The MUX has a delay of 4 ps.

Suppose this machine's ALU consists of NAND, ADD, 

and MULT units, and an ALU_MUX, with these delays:

    NAND:            6 ps

    ADD:             25 ps

    ALU_MUX:    6 ps

Q. In MULT, the product will be in S after how many CK cycles?

Q. All ALU instructions takes one sys_clk clock 
cycle. Supposing the clocks run as fast as possible, 
and the ALU determines the sys_clk and CK rates, 
what is the machine's sys_clk rate, CR?



Q. Claire notices that the MULT unit could be pipelined without changing its hardware except its clocking: 
Eliminate CK and clock MULT with sys_clk instead. A MULT instruction would then take 4 sys_clk cycles 
to finish. Claire claims that if we also decrease sys_clk's cycle time, the machine's overall performance 
will improve. What delay now determines the CR? What is the new CR? What is the CR speedup?

Q. Suppose a job mix of 10% NAND instructions, 50% ADDs, and the rest MULTs. What are the average 
CPIs for the old machine and Claire's new machine? What is the speedup of the new machine relative to 
the old machine?

Q. What job mix gives the maximum speedup? The minimum? What are the speedups?



Q. Claire suggests that by adding hardware to MULT, it can be pipelined so that multiple MULTs can 
execute simultaneously. To get started, a one-cycle implementation of MULT is given below. Add pipeline 
registers where appropriate. Give the speedup for the job mixes above.



The MIPS instruction set is designed to accomodate pipelining. The LC3 instruction set is very similar. In fact, it is 

almost a 16-bit version of MIPS with a very reduced instruction set. We will reduce the LC3 instruction set even 

further to only LD, BR, and ADD. (These instructions are specified in our lecture notes "Lec-1c-hardware.pdf", and in 
our archive "projects/LC3trunk/docs/LC3-3-PP-Append-A.pdf".) The one-cycle MIPS implementation (see Patterson 

& Hennessy, Chapter 4) has two memories: IMEM (for instructions) and DMEM (for data). Below we show a similar 

implementation for the LC3 ISA. It is different from MIPS in that the ALU is used to produce the BR target address. 

(Although we are not including any store instructions, a path is provided (orange)). Delays are: IMEM and DMEM, 

200 ps; RegFile 100 ps; ALU, 150 ps; Writeback, 100 ps.

Q. Provide pipeline registers to implement pipelining for the LC3 circuit shown below. 
Q. For the instruction mix (50% ADD, 30% LD, 20% BR), calculate the new CPI and speedup. You can 
ignore pipe fill and drain overhead.
Q. What problem do you see arising if we tried to include LDI in our implementation?

ADDR

INSTR

ADDR

OUT

IN


