. TRuTl ”
big;\'@'\ L&Sl c, T“LI'{ N‘C— vayle ‘es
AND(F, F) =F _X AN %Y

AND(F,T) =F 000
AND(T,F) =F 0110
- BM,em {:"NCT\'MS AND(T,T) =T llol 10

h .

01 01 Y 1w 4 pro oST/';&n
JC {) } —7 { , } e m/,x/:_;

y Aoy T D ore)

=
—
L
X
~
_.ol?e
o —|= — © —
>
—‘
Il

- gvufr\'oh Primf\'\'veg (J["Mll'm COMposﬂLn‘on)

win-Terms wax-ter s

Fy) = 5(9(%)) 1%,;3: r(glxy) h(%,jﬂ

fox, W F OR(AND(: *) AND(s4) ... Awb(.l.))
= WMih- +c(m e%pansion DLJC K&(ﬁ
= AND(OK(',') OK(°I‘>, 0&(0/0)) o~

= MAX-"'cfm C‘X()m\s{oy\ DLJC

%Y | Fixy) LAV AWAR) % 4| k)

0010 0010 000 Fre0) = glog) +hioe)

?1 1 = ?8 (1) + 0110 f{o,l)sg(o,l)i'h(o,l)

0 10 |1 F01,0) = 9(1,0) +h{1))
OR A=)

1110 r1]0 1110 f0,0) = 90,0 +h())

W}\a+ ii Thi avac+\'ov\.?

x Y1 90%9) 0 -
0700 AND(NoT(e) [0) =0
011 AND(NOT(o) | 1) =1
1010 AND(NOT(1), 0) =0
1110 AND(NOT(1) 1) =0
9 y) = AND(NOT() jy) = Ty
= minferm: m,, (9) ek My (%,y)
%Y | h(2y)
?((31) (j)) The oM_&ri
fj Tny%g
> = %
— f(x,g} = 9&,7) +km,3) m gmo\&
= Ty 4 %;_ =M+, (Jf(.) = EWI,;B
. y T 4_{0,11___9\"}
= \3(f Any n-ary function can be built as an
OR of minterms.
¢ h

Minterms are ANDs of variables or
their negations.

Wlax Terms

ﬁL‘)ebra,

%A=1,A*O=1=A
pro = A Y A=0 A+0=0= A
AO :O
AL Mg B+A
0 %0]0
‘ \
‘ \
! |

>

Ar(p+C) = (A+B)+¢ { %:‘z)__D— gm_

’ 3
SRR e
/ﬁ = R 3 (])eW\O((‘)M\\S 1«\» I}

=0 LR
E%\)aQ'l'\K(O'1 ~ +> - E%\mq)fl'\t('] 0 1) (Dud)@

AR = A+ B

- A+B = A - (De \N\M(a)ams iw -\L\
P\O ::0 =N A""1 :,]
AB S == J=Ab+BA
W[—é = — MﬂX‘j—gfm
= Jo|i = j3-F=FKb+b PSRN
11 (O L

~N AN

= 4 BA = (At) «(AE+B)

—

Sfm‘:ll']cfca'.l'\.on

Ab +

Ab

Yor

) S
o

DEC

Sefl]— % |
Sel[o] —

(ATB)+ (A+B) =

A5 Zgyy 4 B=7}
}7{' aJoe:J/)\LZ
/”‘f/&t’ﬂ wlm} A w.

B

B

A(RB) + B-(Rrb) (dish)

B A Y
001
0|
10
N

COJe. =00

A

0
o b
0

A

— —0 O

o)
I

0
I

BA Y % Y X

00 1 0 00
o)
O%
|

e Xdc'H\’

one au'{’ +
=1

oOI{ 0 |
o |
o)

10
I

0

__)’ code= 01 —
EQ AC
|
0
0

—ocoo|x

M oUT
A
n D
o} =D -
x4 X1=X
DEC Vio
) — : Ty
sel 0 A
SeAL]—1 %] X1 X g—j}‘
Sef[0] — MUK 17
— X Xt 0 = X
—x,,
T —
—_-XIO
- XU
Sel
4x1 +z
MUX /l_—_-xoo
Koo 1—1x,, 1
. ouT |—
y T 0—1X. 0uT[o]
lo O-——)(l
X 1 Sel Z
Mg vy L
yZ OUTD:o]
Iz Rom 1 4 0—%e
ouT S
4ddress 7 1 Xa o T j
1__)(,0 0uUT[1]
address 0—x
/i/z T Sel
-t :?. AJers; 7£ zg,ﬁ
] Yoo o7 |
WO(JOO O 1
Fz_ 29 WO(‘JM '] '] /
= 1 y Con, L4855
\ y Word 1 0 e,,.f /i/z
6f
0 .| [\ Woedy [0 0 Ro
ﬁ :DM’I T

Uag

Q. How much is the time delay for the 4X1 MUX? Assume only basic, 2-input gates are used (AND, OR,
NOT). Assume each basic, 2-input gate has a delay of 1 unit from the time its input changes until its
output changes correspondingly.

Q. How much is the time delay for a (1 M)X1 MUX? 1M is 2"20.

Don't Cares

SUP\OOSC ou(W\“C,'”.WC
§ 8=0 ,Hhew Y= A

Bt g, B=1, & wlﬁkw_, Mo ’J;AZCVCV'CE Wllﬂt Y .

00 0

00 |

01 0

01 1

'~ = 1 0 0

S-_C\\ABA | 0 |

n 10

Geoop I
+

BAY

— W}MBOMMM
|

Cﬂlle'AwJ.

00[0
01 |1
10 |X
|1 |X

0\;}‘7\7} AC";'& lares -
con be either 0

N A whichewey 4
Conyemisd .

Bay
00[0
o1 |1
|OI
II|
Wﬂ&s uefﬂuk:
B AY
00|(0O
o1 |l
| X |X
Gt S B A
0 0 0
0 |
11

bt Foll Adec

The above Full Adder (FA) includes two 1-bit, 2X1 MUXes.

Q. What are the min-term functions for one-variable Boolean functions?

Q. Build a 1X2 DEC.

Q. Show a logic design for a 1-bit, 2X1 MUX. Use the organization shown above for the 1-bit, 4X1
MUX. That is, use a DEC to gate input signals to an OR.

Q. How would we build a 3-bit, 2X1 MUX? Show a design using 1-bit, 2X1 MUXes.

W\'(vf\'mns)Dn 1‘L’«1L (Mp?'l ?
S e S,
ﬂ_ﬂz(\ 7 = o:x 1 M= %L'E ", =5

G, 4l o s w —n,
1x2 DEC Xo
7o _ 0UT
X } Ml? X
Sel MWJ—C(’M
| possible % | fbd | AX1 MUK
DEC
J |
3"1)]"'/ X1 Mux Sl
Sef
i Al2]
ALzq{ ALl
ALT 0 wTL2]
Blz1 1 }
\ 0 ouT[1] ADa] 3
2:
B [24] 8111) 1 -0 3 2]
a 8703 : AL ovTLo] B[“if_ :
- Sed !

2-bit FA By A B. A,

B A 1 B
—c FA G—7—1C FA Ca—
S S
| |
ALV > %
L k.

BA B A
FA AND
S y
k. ok
10 01
ouT

module MIPSALU (ALuUctl, A, B, ALUOut, Zero);

input [3:0] ALUct]1;
input [31:0] A,B;

output reg [31:0] ALUOuUt;
output zZero;

assign Zero = (ALUOut==0); //-- Zero 1is true
always @(ALUctl, A, B) begin //-- reevaluate

case (ALUct1)

\

0: ALUOut <= A & B;

g 50000'f> 1: ALUOut <= A | B;
2: ALUOUt <= A + B;
6: ALUOUt <= A - B;
7: ALUOUt <= A < B ?1 : 0;
12: ALuout <= ~(A | B); // result is nor
default: ALuUOut <= 0;
endcase

end

endmodule

Algorithms and Computers

We would like to have:
-- A simple concept of computation/computing/computers
Why?

--- 1. When we build one, we can tell what we want: can it do what it is supposed to do?

--- 2. When we see one, we can recognize it (eg. is a QM machine a computer?)

--- 3. When we look at a complex system, we can identify its fundamental structure: abstraction.
--- 4. We can define what we mean by an algorithm (ie., TM that always halts).

BIG IDEA: Define computation (automatic procedure)

TMN w\o&,\ 4-& (’,om‘w“'&'\'\'or\

Church-Turing Thesis:

Any computation can be done by
some Turing Machine (TM).

(Efficiently?)

Can't prove, but works so far.

2. R/w head

1. \“fl'ﬁl'\'c
Tea pe
One SjW\m pur (e“.

F“’“ ¢ (‘" ho‘p hu,ml)e('
of cells are net blank

kS N\ Con'hro\le r
lw ohe s‘bd't d tm

Finite number of d'«,erY
Changes stafe deferminidli

mx’f {7+€ OIePev\éS' m <Y
av\c) an’fehT s'fane Specl

wlly,

RU\) or wf\-'fe Ohe S m\oe .
Wove L. or R. one cell.

3. Fl'v{t‘l'e - s’fd‘e

Y. Fiile $7h\Lo\
&, 5.

Fbr‘ @xwwxplﬁ}

’_‘5021%

S = g’%of"}q/‘f“jz
t blenk

mbol r’Ca()

'ﬁz sfﬁr‘f §Jfa€-

Operation

1.
2.

Read one symbol
Depending on state and symbol,
--- write one symbol

--- change state
3.
state", stop operating.

--- move R/W head one cell L. or R.

Repeat, or if current state is a "halting

Finte- Stcte Maching Grtealler

State _I:'ms'\-l"ion dia . C0N0S

mpat |
/_\-—\E,_i/\ / /”/]L[‘Q/
7/4-/0@
0 1 1 1 Confy UFC%;}[,\
T)\ cor(evﬁ Cell +
it l& R |,J hed posifion

FSM siik Trtv\s'njﬂb\n

START 4 ,4,L O/1/L s?:é L}

Y

0/0/L

N 1/1/L /7‘ cvmﬁf? \
N\ /
N / |Vnp+

> . .}Ml)c\ 53“% R/ he.ad
- Wave
STeds w e E. These rzercsu‘\\ v unx
sawme Stafe If (current state == E) AND
(current symbol == 0)
then
it bol ==
o e drasition cle Y Lo Wi vea)
(new state == Halt)
whd JO?S .\} JQ?\

On this specific input?
P P Alternate representation of FSM:

On any general input?
Ve P (start state = E)

(state, input) (output, move, next state)

/1/' (E, 1) (1,L,0)

. . (E. 0) (0, L, Halt)

Shme ‘M?l’ﬂ mdlm (0, 1) (1, L, E)
(0, 0) (1, R, Halt)

aq Jlkjmm.

/0 encothJ (1 the S,

A-bit s ymbols
es. > 3<§000/ool/ ., ll\}
[
FSM
k OvTPUT
——>
FSM has input/output, but
n from/to where?
2.’.;;—: (1) Other FSMs in same

ST ATE machine

STATE 4 LE/V\E NTS (2) Feedback loops
| Fsmi—s|fsm fsmls ..
CLOCK L
fee) bkok
We like to separate state into two "types", control and data
FSM Dd‘f’d‘" . Eg., some state elements are for "control" state, and some are for
Co:d’rol\er registers "data" state.
L1
O le—>{ [
P,m c?l'lo'p.t

dajlpaﬂq

Lontrol
fun c"]'ov\

FU N(+| t.)\n

Input

We need to remember our "state".

Basrc Sc%ueﬁ\“im\ elewments

--- Stay in one state: use feedback.
--- State is output Q.
--- How do we change state?

Force Q=1.
Stable. o A=0 When A=0,
NAND=1.
— When A=1,
\‘ — Q - 1 NAISlr[]):(-B).
_—
|
0
Force Q=0. . /gp
Stable. b =
\, T\= O |
0
45 e
latch "
. -y Q=

Use a basic latch to
build an SR-latch:

|

5 >0 QR H—Q s o -

invert S, R inputs. latch —> SR

. — 1 latch __
S=R=0 stable R ——>° Q| Q R Q

S=1,R=0 Q=1

»|

SR lafch A basic ofomeit

S=0, R= Q=0
1 i §7L¢7L€

S=R=0 stable

"gating'' a signal, A.

Clockmg, par'\' 1: 35}'3"3./&45/6

E=0: Y=0

E=1: Y=A
SR EA|Y=(AB
5 dch Jra=t d
— 9 SR-latch w/ enable Ul
r__D__ s qls 0 1|0 PIT ighore
R R E=0: ignores S-R inputs 1 111
E=1: transparent
E
SR}' \aken ‘{. J.
W[enable . q D-lc
—Ic Q . SLW\G)\{F\'I D_ R > Q w/ ﬂu.“g
>R € DR — b
| | €
E |
E=1 E=0
D=0 : Q=0 stable
D=1 : Q=1
2~ phase dOQkiN_)) D-FF
Pro\olc\rv\
Text - s'b:fe
If E=1, +
. -Fuldc 17
How many times
will update to =
state occur before L L,
QP E=0? 2
£ 19 ¢Df9.°
Q Dk
i E £, E\
0 0 | L1 stable
CLOCK —~ - L2 becomes ;
Time —> \/Y\) transparent: 2;;:5:2:16
output changes
Latch is transparent L1
during the time clock=1. | / transparen
Need to prevent £ 2 0 “ 0
feedback, until ready. Z“P}MSC C/OCk r'ls'ng et CJJQ i /
Eq 0
A 7
Time —> 7[2,///;? clock 0&'6

D-FF

D-1a¥ech D-lateh D-FF
QRDIE—9 DD g ok
E E E
‘ E 1 L
| [
! PHASE-1 PHAsE .
E‘ E\ Se-1 PHASE-o

2 2-Phase Clocking

. Separate signals for each latch's
‘MP\CM(’J\-\- 2- pl\}.ses enable in FlipFlop. On breadboard
we connect PHASE-1 to one data
switch, PHASE-2 to another.

Q Q D-FF D D
] E, E 1T Positive edge
..LrJ_L__ CeaL \ b-FF triggered
cLoeK 9 —Q D— DFlip Flop
' xR
(A /\

IN_Q &\Mzes o mmj

dek chp

D- FF, pose}je T(itnm) \A/ wile evable

We often want to control whether or not the FF will be written into when the
clock pulse arrives: add an "enable" input. When enable is 0, the current state
is written back into the FF. Otherwise, D is written.

D-fF

D_

we e => porr pos'-edje
> Qfr»Q —1{D 0] Tnnereé
)N e ex

W
/|\ bfl‘\'(. cnﬁ.LIf

If there is no feedback path from Q to D, we do not
| need a flip-flop, we can use a write-enable latch
(48 instead. Datapaths sometimes can use latches.

FSM in ROM (n-bit state, i-bit input, k-bit FSM output)
(STATE, INPUT) is ROM address
n bits + i bits ===> 2*(n+i) ROM locations
(NEXT-STATE, FSM-OUTPUT) is ROM output
n bits + Kk bits ====> (n+k) bits per location
===> 2\(n+i) location by (n+k)-bit word ROM

ANY FSM (Mealy or Moore) can be built as a ROM

NOTE: A Moore machine's output depends only on state

> use n-bit addresses, one ROM location per state.

Every possible FSM can be built as a ROM.

ROM is very large since there is a word for
every possible {state, input} combination.

\/
" —

a/o

/0
BUT, next-state depends on current-state+input. Encode
part of next-state function in ROM word as NS-CODE, ﬂc\b ress Rom)a,‘l'a LJortl (Ro b-’)
and use external logic to calculate next-state function: _ J N
next-state = f(INPUT, NS-CODE). This is what is done A7 WP next-state o uTput
in the LC3's micro-coded controller. @) @) 0 0
o) \ [
| O | |
| \ o 0
Rom
NS OUTP\"T 43Jr-e:;
B ENOMN TRty
)
MAR | O | O ——— ol
at clock tick: - 0
_ ext ¥ ‘
-- { current state, current input } captured sTATE \L rs'f‘l"t\ ,.‘,\Pu-l-
-- output changes to match captured state/input ou pﬂL *

-- Every state row has same output
===> Moore Machine

-- Rows for state S have differing outputs
> Mealy Machine.

DL

next STATE

D Q

We can enumerate all ROMs (and
consequently all TMs/digital-computers):

Concatenate ROM content from all words:

address content

00 00
01 11
10 11
11 00
==> 01111000
Listall n =i = k = 1 machines:

FSM-0, FSM-1, ..., FSM-256

Listall n =i = k = 2 machines:
FSM-257, FSM-258, ...

and so on. V
12 Rom
WORD
oul
ADDRESSJ[1:0]
ADDRESS[1] 0
ADDRESSJ0] E x Q/\
WORDI[1:0]
uT
N 0
QA WORDIT WORD[0]
*,D
CLOCK,

IN

Sleclrons & Heat

Joor e i / AToM

o~ -~ @@t
= 4
- N bouwd elech-oms

Collision transfers energy to
atoms of material, e.g., wire.

Atom motion = Heat.

~All collision energy radiates

as heat.
— VOLTAGE —+ ~
;o *\ N -
1 VL s . N N ‘. Y . ' .I f J
High Current ==> Many e- Moving
High Voltage ==> Large E Field H (’JJ Eher ;l{ Pow = T \/
Large E ==> Fast Acceleration sec

High Voltage + High Current ==> Lots of Heat

Basic Electricity, The Water Analogy V

P“‘)‘L'\ ik mofeche (6'37 /

wiler pressure

.0. c.l..OO'O.V) (\/blTﬁjC)
~
maluid) (pocked sand e) grave] &S
1 F (9“‘3
Cond ‘.‘
onductors Rj 'g KC

Conduction is the movement of electrons (e-), also known as current, “,‘.
i. (Conduction can also be by positively charged particles.) Any "f\
material conducts, if we pull hard enough on the electrons. Charged t
things, such as e-, move when an electric field (E) is present. In solid .
materials, the nucleus of an atom contains positively charged yi .
protons (p+). Protons and e- attract each other, which gives E, like J /-c
gravity. In solid material the p+ are fixed in place, but the e- can (’
move. We can think of the solid material as a pipe packed with / llé
something; e.g., sand, and the e- as water molecules. Resistance

(R) is how tightly packed the material in the pipe is: if it is tighly W;L/L #"WQ’
packed (the material is very fine material such as clay), water : ﬂg""‘%
molecules have a hard time making it through; if it is loosely packed

(large gravel), water drains through easily. The water pressure (V)

and R together determine i. Rj i SMQ“ RC IS QA?Q
‘:j is fage L.c is small

Parallel circuit

Suppose we have two identical pipes side by
side, and they both have resistance, R, and
each has current, i. The current through both
is twice the current through one, 2i.

Series circuit

If we connect them end to end instead, we
i might expect the total resistance to be R+R,

and the current to be (1/2) i .

2R

~ Vv Ohm's Law devices

gy Different materials and devices have different

relationships between i, R, and V.If the
relationship can be expressed as,

iR=V
i= V/R R is SMA.” then we call the device an Ohm's Law device. . V/ R i b'\
Of course, this is only an approximate model. £=V/R s 09
bia £ If R is very big, the device is a non- l _
‘/ j conducting insulator. A big pressure V only 5")4 I Y
gives a little flow. If R is very small, the
! — \' device is a conductor. A very small V gives V
N a large flow. —J

X smal .
all y ‘\,bljv

It takes work to get water pressure. Suppose we have a
water tower. We pull the water up. Pulling the weight w
up the tower's height h is the work we do, w X h.

We can get that same amount of energy back from the
water in the tank. We can drop a bucket of water and use
the pull to do work of some sort. That energy is used up in
our packed pipe as the water falls through the pipe: it
heats the packing as the water collides with the packing.
The heat escapes by radiating away.

The downward force on the water is caused by the gravity
field E acting on the water's mass: the weight of the
water is E X mass. On the moon, the same mass of water
weighs less because the moon's gravity field pulls less
than earth's. You can jump high easily on the moon, for
instance. Smaller E would mean it takes less energy to
move the water: less pressure in the pipe, and less flow,
and less heat.

Our model of an electrical voltage source is a tower and
very large pipe without packing. It supplies water that
flows through our packed pipe, and an energetic process
pumps water back up. The pressure at the pump inlet is
V- and the pressure at the tank end is V+. The pressure
difference V drives water through the packed pipe.

Voltage Source = Pump + Tank + Big Pipe
Device/Circuit = Packed Pipe

The energy lost in the packed pipe by the water that flows
through it is the same it took to pump the water into the
tank:

energy = weight X h

weight = mass X ¢ (g is gravitational acceleration)
mass = volume X density (let density = 1)

volume = Area X h

energy = (Area X h X1) Xg Xh

Here, we are assuming the volume of water that flowed is
equal to the volume of the big pipe whose cross sectional
area is Area. Because the big pipe is h tall, its volume is
Area X h. Suppose we want to see how much energy an
amount of water of mass m loses. We first find the energy
lost per unit mass by dividing the above by the mass (Area
Xh X 1):

energy-per-unit-mass = g Xh

gravily

Work energ*& =wxh
/enerﬂ‘i

A
~

L\eijlﬁ :

no
hest

loss

Voltsge

Solrce

v-j ,V-
\ Jeﬁte,circuff

The energy from mass m is then:

energy-m = mXg Xh

Define V (short for voltage-across-the-
device) as (g X h):

V=(g Xh)
The energy for mass m is then,

energy-m = m XV

A packed pipe with water flowing through it has more
pressure on the inlet side than the outlet side. (If it were
the other way around, the flow would go backward.) The
pressure drops along the pipe. At the inlet side, the
pressure is just the total weight of the water in the big
pipe pressing down divided by its area:

pressure-h = (Area X h X 1) Xg / Area
= gXh
=V

So, the voltage V is the same as the water pressure
supplied by the source. Exit pressure is zero because
the pump is pulling the water from that end of the pipe.

Suppose k units of water flow per second. The power
loss in the device is,

Power = energy-per-unit-mass X (k/sec)
= V X (k/sec)
Current is i and is equal to (k/sec):

Power = V X i

Electrons and water molecules are equivalent. They just
differ in their respective fields (E and g) and the
properties those fields affect (charge and mass). Power
loss is heat (mostly). Note that we have used E and g
interchangeably, and applied electrical terminology to
water.

Suppose our packed pipes can be modeled by Ohm's
Law. Power loss is then proportional to the square of
V. It can also be expressed as proportional to the square
of i. (Both are shown at right.)

Note for unchanging V, that as resistance R goes to 0,
the power loss goes to infinity. This is a short circuit.
Before power loss actually goes to infinity, the heat will
melt or vaporize the device. Of course, as R goes to
infinity, nothing will flow, and no power is lost.

/ Pressure h-j

11

Yt

Pressure is }e o

power =LV V=,L'R
=i (iR) = 4
/Power = ,LV L = V/R

= (R = V&

Aim ower = / by
ka0 o R

Voltage Divider
g Source

pressule Ou-ff’ "+ pressure,

J Vait

At right are two devices connected in series: Between
them is a section of empty pipe whose resistance is
relatively close to zero (wire).

The pressure (voltage) across devicet is the source
voltage Vs minus the "output" voltage Vour. The current
exiting device2 has pressure Vg = 0. So, the voltage
across devicez is Vour.

— A ;
resistances, R1 and Rz. The current i is the same he resisiahce
through both resistors.

The "output" of this system Vour depends on the two

Suppose Rz is nearly 0 (a resistance-less wire). The Lo w_a«-of_ tﬁf ence

total voltage difference over both resistors is (Vs - Vg) =

V;s. The output voltage is the voltage difference across a (V - V) —

R2. Because Rz is about O (i.e., it has no packing, water s j) = V;
passes through easily) 0 volts is almost all that is .

needed to move water through it. That is to say, no ca/m»«f W

water pressure can build up on the inlet side of R2 NV,) l/

because when it starts to build up, water flows through g A= s/(K «R
before any pressure can build up. The currenti is ! z>
completely determined by Ri.

In the other extreme, suppose Rz is nearly infinite (an
open circuit or switch). No matter how much pressure
there is, almost no current flows.

i = (Vs-Vg)/ (Ri+R2) = Vs/ (Ri+R2) ~ 0

Pressure will build up as flow exits R1 and gets

stopped by R2. Water would flow through Rz if the (K R))
pressure at one end were different from the pressure at e V,,,,r =4 2

the other end. But, no current flows. So, the pressure at =\ .

both ends must be the same. That is, Vour is the same / | (-0 =0
as Vs.

(Vs-Vout) =iRi ~0R1 =0
Vs~Vout

We need Signal-Restoring, Non-Linear Logic. Ohm's Law devices are LINEAR.

Suppose we had only linear devices (or something very nearly linear), then signal output has
errors proportional to input errors.

E.crors/vsise. . x+ €, f Foflxee) + e
W 1L\

' . n vl npv v C((or
st\earﬁ‘},t'- mm'mra/ e,?f“ °°Jr‘m N

JL(V+€W)= /1<(V+€uw§ + Cost T RV*RE, + Lot

gf}c’;ﬁov‘ error

Vost

. _T‘ ln i/V\\refj"er CJ&
k==l L s

in ~Po— i)

{-\L\'v\) =~ j_
_ve >
ol
(-
o1 Fy = -1
[
R Sugpose #e Connect 2. s Series
~t e —>
..1 W O 1 IN 70I>O—-;(l\>°_, — ﬁ(aq(m\}

E(‘\'\B S {%(we) = kv +Re, + ¢ ‘
('l)(‘l)'*' (*\)e_° + € (V s V‘°m"""*l §ljha|: -hj_)

= l-e,t €

h

47_(3(‘(\-“35

¥

7[\1(\—60—%5\ > ,ks‘fages R ‘
S R A N e 1+A§<’l>pefl

The errors include signs = random walk with random size steps.

Errors independently random w/ average 0 ==> variance increases w/ k.
Total error grows w/o bound!

Take random step (either in the -1 or +1 direction).
How far from 0 can you expect to be after k steps? About k*1/2 away.
With probability 0 you will be at 0, and error gets unboundedly large.

We must Reduce error at each stage ==> exponentially decreasing effect in later stages.

N on-Linegr

I Ha.% areas
0uTpot Fange

is SMQll er ‘{;\N\/\

OUT ‘P[a:(. SIOP«Q (V\Car“p
0

\ f(qu,) = 7[)(v) + gL &, + €

Jc\b\-LQ}a.v\
’Sehe
e Debiden 47
Cbioal\n (4
evYvalr d .
30ne ~—1npv exrel
Y (l
ﬂﬁm ks%ﬂe:: = 1"“42;:5
If g is large enough (flat areas of curve are flat enough), C’M vefy es ./
and

if output error size is not too big,
Then
output after k stages never hits FORBIDDEN ZONE.

So, if we plan to have a circuit with long device chains, we must
have non-linear devices w/ suitable response curves.

Do we plan to have long chains? YES:
(1) feedback in system,

(2) chained data operations: D1 ==> D2 ==> D3 ==> D4 ...
(3) 1 Billion devices per cpu

Devices

. —=
IN —kmm} >[N s

SokhOiJ

iCfi\(Jc(om
,Cof LIQBGY\

307\{

S

Pecwancl

Wﬂc‘f

l

GRWND

Tov NOT

f’%—K'—O\!T Rele '
o) \/

<~ eiv&"

GROVN)D
V=0

Voltage Controlled Switch

IN = Ov
ouT
A :
Sv d -——*—I.'
K
S
I
] B
o
Ov ' ; > |N
oV T 5\/
Sw'\'fclq
Closes

--- Non-linear response

--- Any voltage in allowed range
will yield "clean" output.

--- Easy to prevent forbidden
input voltage.

/
Vay res For each Jevfc{ :D\—/ORHDBEN

ZONE

Selid STAle Qevices — SevacondoNors

9

Phosphorous impurity:
e- leaves easily, becomes "hot"
conduction-band e- .

Boron impurity:
"cold" valence-band e- arrives, leaves behind +valence
"hole" which moves.

Holes and e- move in opposite directions, but current
direction is same.

Easy e- flow from n-type to p-type, but reverse flow
hard: "cold" valence-band e- need too much energy to
become conduction band e-.

-+

L

@ © ©> ‘I

holes moving ==>

+

I
—_

e~ p° e~ L7

e- moving <==

n-type MOSFET (n-transistor)

CONDUCTING (Vgate = +V, R-drain-to-source ~= 0):
+V on gate drives holes away from P-type channel.
Conduction-band e- move from source N-type well.

+V on drain pulls conduction-band e- off.

+I current flows left-to-right.

NOT-CONDUCTING (Vgate = 0, R-drain-source = BIG)
Vgate = 0, holes populate channel.

Source N-well e- drop into valence band in channel.

+V at drain cannot pull valence-band e- from P-type to N-

type.

Ve | R

h"tﬂ'w‘ ’b\(.w\s]; 6 0 oo nit conJuc wg H
+V

5&

O aond oc'['(}nj' Vioddon

Just what we want: nice non-linear switch. 0.7

P-type (n-channel) transistor

Vgate = 0:
Vgate = -Vdd wrt to base,

excess holes, current flows.
R =0, conducting.

Vgate = Vdd:
Vgate = 0 wrt to base
channel is neutral

current flow.
R = infinity, not conducting

— I 0 O thc’d(:['(;ﬂ

+V o0 naf canJuc Wg

w —C R, iN —Ppo— ouT —[R,
.

LY &

L
Mol
of|
t

pushes e- away from channel, leaves

only random thermal e- available for

"MtS](+ Mql» }
AePOST" fona

Fmne e g

Lithography

1‘ L Seed cry el

/"\ 5,(, y‘t'(ﬂ
/ die IVN J 01- iwt
& wafers

o]

N 1 ,:—-W\ol'l'-&y\
’\#ﬂl\ 'pa,L) / Wire, TG P\‘nj b S,

~1G Tranislors Packaj) g
\ /\>
~ B |

Line S \'32,5

A4

™\

| Lokl |)
/
(

Mask
!/_ Lmﬂej mrkv\ ﬁd‘}zr Vroce'if

Lines Wnore GXPURiSUE
+§

limes shr |'N\R

S ‘ frassistors
n e raﬂS\'
d\"‘md [Onm ,h;d;\ore fu neFin
7 Ufﬁje
F ’”E.ter. S pore sales
Sw\'l'bo\ms ice
— fame pT!
— fustor clock,

N
S\N\l&\\e\' "Fed'ure) —> Mm AC‘F;A;, /Mtldr Jfl_ jie/J, EU-}'SM(//«' Jl‘e ﬁ Mmej W

3

LC3 Intro/Review

Copyright © Tha MeGree-Hil Compenimz. Ine. Permizson regursd (o rapracucton or copiey.

LC-3 Overview: Memory and Registers
Memory

« address space: 2'% locations (16-bit addresses)
+ addressability: 16 bits

Registers
+ temporary storage, accessed in a single machine cycle
#accessing memory generally takes longer than a single cycle
+ eight general-purpose registers: R0 - R7
#each 16 bits wide
#how many bits to uniquely identify a register?
+ otherregisters

#not directly addressable, but used by (and affected by)
instructions

#PC (program counter), condition codes (ps K)
57

LC-3 Overview: Instruction Set

Opcodes
+ 15 opcodes
* Operate instructions: ADD, AND, NOT
« Data movementinstructions: LD, LDI, LDR, LEA, ST, STR, STI
« Control instructions: BR, JSRIJSRR, JVP, RTI, TRAP
« some opcodes seticlear condition codes, based on result:
»N =negative, Z = zero, P = positive (> 0) —_— PS R ' C C
Data Types
+ 16-hit 2's complement integer
Addressing Modes
* How is the location of an operand specified?
* non-memory addresses: immediate, register
« memory addresses: PC-relative, indirect, base+offset

I—\ssemlol\} Lawa\)a,a&

/ foo-&tSW\/aM ﬁSSCW\uj Im\jukje source L'OJe JCf,f.

-orig x3000 (Asczrz CGJCS) arected i ard TxT eddo)
Id r1, six
Id r2, number . c ot .
and r3,r3,#0 opceée foo.oIoJ . /MJ o@zd’s BlTS .
\ 0011000000000000 €— header
again add r3,r3,r2 0010001000000111
add r1,r1,#-1 Assembler 0010010000000101 * ™\ ¢ogeifuted
brp again Ac3as |™> 0101011 100000 waj-
0001011011000
halt 0001001001100001 4
0000001111111101 Tramslefion of
number .blkw 1 1111000000100101 <
six fill x0006 0000000000000000 BLKW 1
msg .string "abc" 0000000000000110 . fILL x 000 &
.end 0000000001100001

\
0000000001100010 47 %0021

0000000001100011 b’ x 0022
0000000000000000 ‘¢’ y 0443

NV %0000

Assembler (Ic3as) Directives (to control the assembly process):

.orig: puts a load address into the .obj load-object file's header.

.end: tells assembler, this is the end of source code.

.blkw: tells assembler, create n blank words (all zeroes).

fill: tells assembler, put these bits into a word.

.string: convert text to .FILL w/ one ascii code per word, NUL terminated.

The assembler produces machine code words:

--- ONE PER LINE expressing an LC3 instruction

--- ONE PER LINE where there is a .fill directive

--- n PER LINE where there is a .blkw directive

The assembler also calculates offsets for us using symbols. Symbols stand for
memory addresses (starting for the .orig address). Offsets are calculated by
subtraction. Symbols refer to the next instruction's location.

. asm ~.orig x0200 Lssemuc
main: q 5
ADD R1, R2, R3 Le3

NOT (Register) ADD R4, R5, var
15 14 13 12 11 10 @ B 7 [5 4 3 2 1 li] foo FILL X1234
NOT [1 0 0 1| Dst | Sre |11 111 1 var- FILL x012F ffol{;
DR SR .end
ADD/AND (Register) s zero means Tregister mode” 2073 N
15 14 13 12 11 10 & 8 7 [) 4 3 2 1 1]
0000001000000000 - (20141
ADD e
lo 0 0 1| pst | sre1i \oJo of sre2 | 0001001001000011 1
15 14 13 12 11 10 & 8 7 [+ 5 4 3 2 1 1] 0001100101100001
AND [0 1 0 1| pst | srei\o0)o o] src2 | 0001001000110100 J
DR SR| SR2 0000000100101111 loa
- this one means ‘immediate mode”
ADD/AND (Immediate) — 0200: 0001001001000011 | Mem
ADD [0 0 0 1] pet | szei \1J{ zoms 0201: 0001100101100001 f<—
ST — 4—&-..)3 — 0202: 0001001000110100 PC
AND [0 1 o 1] pet | seet (1] o5 | 0203: 0000000100101111

mR || MAR

LD (PC-Relative)

15 14 13 12 11 10 ¢ &

J & &5 4 3 2

1

ST (PC-Relative)

0 15 14 13 12

LD [0 0 1 o] pst |

PCoffsetd

11 10 & & T & 5 4 3 2 1 0

ST[o 0o 1 1]

DR

src | PCoffsetd

SR

e e

023F

Re; File

ST

symbol value
"main" x0200
"var" x0208

Clas
Hoad

— 023 F
s

7[,00. ash
main: LD R3, var
var: FILL x023F

(e

0010 011 000300111

208

PC—

0200:

0268:

0010 011 000000111

0000 0010 0011 1111

-20)
T

IR

LDR (Base+Offset)

IDR|{0 1 1 0| Dst | Base | offsets Mm
DR -
- mar[W
_ €&
E’d = i Mbn
B G = G
PROCESSOR BUS h . "main”
4_‘ M_L = main: LD R2, tablePTR wablePTR"
gq @ : :;i - LDR R1, R2, #2 "able"
REG_FILE% ; tablePTR:
““’A . FILL table
R @
‘\r =) table: .FILL x0000
. .FILL x0001
IR stafkOps
| 3 SRR FILL x0002
= ’ 574
—tey A—‘ —

x0200
x02F0
xFFO00

LEA (Immediate) 0000 0! 111

Source Code

main: LEA RS, array
LEA[1 1 1 o] pst | PCoffsetd |
pc array: .BLKW 100
| ~0201 Symbol Table
bR N "main" x0200
"array" x0210
0210 | RY
Memory
0200: 1110 000001111
210 0210: 2772?
- 201 0211: 2?7?77
F
BR (PC-Relative) PC
9-bit offset:
BR |0 0 0 0|n|z|p] PCoffset?9 PC +/- 256
PSR e €€
Nz)P Source Code
main: ADD RO, RO, 1
BRp main
. PSR_REG
B E=— F'l'SN\ Symbol Table
e == Con (ol "main" x0200
i . g {' 200
BR_Logic S " .’,LO 9\' Memory
__:ﬁ - g — -2, 0200: 0001 000 000 0 00001
E = 0201: 0000 111111110
,,,,, p==k: =
; Ty EE
| [// "“"8‘5,,““\‘7,';” g Control| Outputs
Control T:WPUSM e L. .
Inputs | = »only certain instructions set the codes
SR (ADD, AND, NOT, LD, LDI, LDR, LEA)
Ben ST
‘g 10 5o clcjaPo?l'(!\ ATE AP‘OM
IN / %:7—"\? / c + (DDR 50
\ vext-state . on o)b WORD /
N X S\ jno.\s . [0
4/ —] iN ——{f) ¢

/

STATE DIAGRAM cTite Code

Moore FSM
--- Output not a function of input

8
--- Output determined by state only //‘ 50 007" U7LS (Vlo-l" Shou}n)

usuall
Qf ~ éLf s'}a, es RTL j
— Y serd ROM Pc <« PC+| +1 PC
\s Trol
Dp wQ Conlro
20 Z YAk word RON] Mealy L 2l Srynal
STATE 10 J2
W 2 R__ V\ex"'-s"fa',f e
JMP 1 1 0 0/0 0 0| Base |0 0 0 0 0 O Source Code:
main: LEA R7, next
BRnzp foo
PC next: ADD RO, R1, #11
TARGET
SR| foo: ADD RO, R, #10
_ JMP R7
_J
0+
x 0000
MAR ME
TRAP 0005'\ M +
VecTor
TRAP|1111/0000 rapvects N
| | ‘O otopo o] 0| | M 123% Teble
Calls a serviceroutine, identified by 8-bit “trap vector.” L1234 d- - _ __
Pcs5¢79
1234 |TRA? x0&
f Revting
JMPR7 |
v Y
“5¢7 9| R7
5¢78: | TRAPx05

appercla ¢ The Microarchitecture of the LC-3

'j:e'|'c.l\ = ______\
Yo 5o Figam C7]

* F DECODE |

e 5

BRpsciz]

TaB

-
[Sea Figua C.T)
1 o
DR=-ER140FZ T
sal O

18 P01 - PC + SEXTjoW=at] 1]

" DR=—MDR . -
(Tecc MPLAR: - MDR
A

To#8

"OF2 may ba BAZ or BEXTImmE]

Figure C.2 A state machine for the LC-3

| h‘}trwpl’ 5,

lk'\

Risc

a/umwmi& ffpco3<s
LD,LDL, ST, STI
JSR/JISRR

minde JMP?
chong- BR > grg

Lominde TRAP ?
MM}L BR —RBRR_t

577

Interrupt and Exception Comtrol

Excef\'n ons

1
__“— BER=Fails= HeR= il ZHR-GF
A5

/AN,

S i 5

Wiew

Pof . Esli Peiv
! Exc.
Po' PSR Q:‘{z .

EPc-5P+1
[FEA[1S]
(])

vT

\Jwvff

Sexvice

VeCTOA

C.,

RT) Rodtine : ’ .]
- |, rc LT
RE et gy ¢

6 b P Figure C.7 LC-3 state machine showing interrupt control
balfa
Push
SP 2ADD R6, R6, #-1 ; decrement stack ptr
STR RO, R6, #0 ; store data (RO)
EE STACK, \
T / 0 Pop
B? ILDR RO, R6, #0 ; load data from TOS
ADD R6, R6, #1 ; dgmmaes=gt stack ptr

=
Vaciorne—al1
MOR-—FER
PER1 5}

.
= L
[FER[IS] -
el
‘ L WOF=FC1
To i T
-

op (olt

Exe s FPUSH pe

Q_%‘j PC < Vealor

FC=—NOR

o

Ha«kmare

R7- £ O»luje% s

RE- SP

+9

max

Interrupt_Logic

ng priority

5'¢,..'|+con'nq Super + User
vy
Mem

L vT |

Text
Savel SSP “dde || 08
) STACK

R T‘jﬁ,zk UsER
STACK

[T/0 |

Saved USP

r Pr'.N ilese. NC§ P

1
¢ 1.’ri ori’\'\z
0 Supervisor

