
AND( F, F )  = F
AND( F, T )  = F
AND( T, F )  = F
AND( T, T )  = T



Any n-ary function can be built as an 
OR of minterms.

Minterms are ANDs of variables or 
their negations.









Q. How much is the time delay for the 4X1 MUX? Assume only basic, 2-input gates are used (AND, OR, 
NOT). Assume each basic, 2-input gate has a delay of 1 unit from the time its input changes until its 
output changes correspondingly.

Q. How much is the time delay for a (1 M)X1 MUX? 1M is 2^20.





The above Full Adder (FA) includes two 1-bit, 2X1 MUXes.

Q. What are the min-term functions for one-variable Boolean functions?

Q. Build a 1X2 DEC.

Q. Show a logic design for a 1-bit, 2X1 MUX. Use the organization shown above for the 1-bit, 4X1 
MUX. That is, use a DEC to gate input signals to an OR.

Q. How would we build a  3-bit, 2X1 MUX? Show a design using 1-bit, 2X1 MUXes.



module MIPSALU (ALUctl, A, B, ALUOut, Zero);

input [3:0] ALUctl;
input [31:0] A,B;

output reg [31:0] ALUOut;
output Zero;

assign Zero = (ALUOut==0); //-- Zero is true if ALUOut is 0

always @(ALUctl, A, B) begin //-- reevaluate if these change

    case (ALUctl)
    0:  ALUOut <= A & B;
    1:  ALUOut <= A | B;
    2:  ALUOut <= A + B;
    6:  ALUOut <= A - B;
    7:  ALUOut <= A < B ? 1 : 0;
    12: ALUOut <= ~(A | B); // result is nor
    default: ALUOut <= 0;
    endcase

end

endmodule



Algorithms and Computers

We would like to have:
    -- A simple  concept of computation/computing/computers
Why?
--- 1. When we build one, we can tell what we want: can it do what it is supposed to do?
--- 2. When we see one, we can recognize it (eg. is a QM machine a computer?)
--- 3. When we look at a complex system, we can identify its fundamental structure: abstraction.
--- 4. We can define what we mean by an algorithm (ie., TM that always halts).

BIG IDEA: Define computation (automatic procedure) Church-Turing Thesis:

Any computation can be done by 
some Turing Machine (TM).

(Efficiently?) 

Can't prove, but works so far.

Operation

1. Read one symbol
2. Depending on state and symbol,
    --- write one symbol
    --- move R/W head one cell L. or R.
    --- change state
3. Repeat, or if current state is a "halting 
state", stop operating.



0 / 0 / L

1 / 1 / L

1 / 1 / L 0 / 1 / L

0 / 0 / L

If ( current state == E ) AND
   ( current symbol == 0 )
then
   ( write symbol == 0 )
   ( move R/W head L. )
   ( new state == Halt )

On this specific input?

On any general input?

Alternate representation of FSM:

(start state = E)
(state, input)  (output, move, next state)
------------------   -------------------------------------
(E, 1)               (1, L, O)
(E, 0)               (0, L, Halt)
(O, 1)               (1, L, E)
(O, 0)               (1, R, Halt)



FSM has input/output, but 
from/to where?

(1) Other FSMs in same 
machine

(2) Feedback loops

We like to separate state into two "types", control and data
. Eg., some state elements are for "control" state, and some are for 
"data" state.



 latch

  latch  SR
 latch

We need to remember our "state".

--- Stay in one state: use feedback.
--- State is output Q.
--- How do we change state?

When A=0, 
NAND=1.
When A=1,
NAND=(-B).

Force Q=1.

Stable.

Force Q=0.

Stable.

Use a basic latch to 
build an SR-latch:

invert S, R inputs.

S = R = 0      stable

S=1, R=0      Q=1

S=0, R=1      Q=0

S = R = 0     stable



"gating" a signal, A.

E=0: Y=0

E=1: Y=A

E  A    Y = (AB)
0   0    0
0   1    0
1   0    0
1   1    1

SR-latch w/ enable

E=0: ignores S-R inputs

E=1: transparent

E=1
D=0 (S=0, R=1):  Q=0
D=1 (S=1, R=0):  Q=1

E=0
stable

If E=1,

How many times 

will update to 

state occur before

E=0?

Latch is transparent 
during the time clock=1.

Need to prevent 
feedback, until ready.

L2 becomes 

transparent:

output changes

L2 stable

L1 

transparen

L1 stable,

next state

captured



We often want to control whether or not the FF will be written into when the 
clock pulse arrives: add an "enable" input. When enable is 0, the current state 
is written back into the FF. Otherwise, D is written.

2-Phase Clocking

Separate signals for each latch's 
enable in FlipFlop. On breadboard 
we connect PHASE-1 to one data 
switch, PHASE-2 to another.

If there is no feedback path from Q to D, we do not 
need a flip-flop, we can use a write-enable latch 
instead. Datapaths sometimes can use latches.

Positive edge 
triggered
D Flip Flop



FSM in ROM ( n-bit state, i-bit input, k-bit FSM output )

 (STATE, INPUT) is ROM address
    n bits + i bits ===> 2^(n+i) ROM locations

 (NEXT-STATE, FSM-OUTPUT) is ROM output
             n bits   +    k bits ====> (n+k) bits per location

===> 2^(n+i) location by (n+k)-bit word ROM

ANY FSM (Mealy or Moore) can be built as a ROM

NOTE: A Moore machine's output depends only on state 
===> use n-bit addresses, one ROM location per state.

BUT, next-state depends on current-state+input. Encode 
part of next-state function in ROM word as NS-CODE, 
and use external logic to calculate next-state function: 
next-state = f( INPUT, NS-CODE ). This is what is done 
in the LC3's micro-coded controller.

Every possible FSM can be built as a ROM.

ROM is very large since there is a word for 
every possible {state, input} combination.

at clock tick:

-- { current state, current input } captured
-- output changes to match captured state/input

-- Every state row has same output
 ===> Moore Machine

-- Rows for state S have differing outputs
 ===> Mealy Machine.



We can enumerate all ROMs (and 
consequently all TMs/digital-computers):

Concatenate ROM content from all words:

address  content
   00          00
   01          11
   10          11
   11          00

                  ==> 01111000

List all n = i = k = 1 machines:
FSM-0, FSM-1, ..., FSM-256

List all n = i = k = 2 machines:
FSM-257, FSM-258, ...

and so on.

ADDRESS[1:0]

WORD[1:0]

WORD[0]
WORD[1]

ADDRESS[1]

ADDRESS[0]



Collision transfers energy to 
atoms of material, e.g., wire.

Atom motion = Heat.

~All collision energy radiates 
as heat.

High Current ==> Many e- Moving
High Voltage ==> Large E Field
Large E         ==> Fast Acceleration
High Voltage  +   High Current   ==>  Lots of Heat

E, electrical field ~ gravity

E X distance  =  Voltage



Basic Electricity, The Water Analogy

Conductors

Conduction is the movement of electrons (e-), also known as current, 
i. (Conduction can also be by positively charged particles.) Any 
material conducts, if we pull hard enough on the electrons. Charged 
things, such as e-, move when an electric field (E) is present. In solid 
materials, the nucleus of an atom contains positively charged 
protons (p+). Protons and e- attract each other, which gives E, like 
gravity. In solid material the p+ are fixed in place, but the e- can 
move. We can think of the solid material as a pipe packed with 
something; e.g., sand, and the e- as water molecules. Resistance 
(R) is how tightly packed the material in the pipe is: if it is tighly 
packed (the material is very fine material such as clay), water 
molecules have a hard time making it through; if it is loosely packed 
(large gravel), water drains through easily. The water pressure (V) 
and R together determine i.

Parallel circuit
Suppose we have two identical pipes side by 
side, and they both have resistance, R, and 
each has current, i. The current through both 
is twice the current through one, 2i.

Series circuit
If we connect them end to end instead, we 
might expect the total resistance to be R+R, 
and the current to be (1/2) i .

Ohm's Law devices
Different materials and devices have different 
relationships between i, R, and V.If the 
relationship can be expressed as,

                    i R = V

then we call the device an Ohm's Law device. 
Of course, this is only an approximate model. 
If R is very big, the device is a non-
conducting insulator. A big pressure V only 
gives a little flow. If R is very small, the 
device is a conductor. A very small V gives 
a large flow.



It takes work to get water pressure. Suppose we have a 
water tower. We pull the water up. Pulling the weight w 
up the tower's height h is the work we do, w X h. 

We can get that same amount of energy back from the 
water in the tank. We can drop a bucket of water and use 
the pull to do work of some sort. That energy is used up in 
our packed pipe as the water falls through the pipe: it 
heats the packing as the water collides with the packing. 
The heat escapes by radiating away.

The downward force on the water is caused by the gravity 
field E acting on the water's mass: the weight of the 
water is E X mass. On the moon, the same mass of water 
weighs less because the moon's gravity field pulls less 
than earth's. You can jump high easily on the moon, for 
instance. Smaller E would mean it takes less energy to 
move the water: less pressure in the pipe, and less flow, 
and less heat.

Our model of an electrical voltage source is a tower and 
very large pipe without packing. It supplies water that 
flows through our packed pipe, and an energetic process 
pumps water back up. The pressure at the pump inlet is 
V- and the pressure at the tank end is V+. The pressure 
difference V drives water through the packed pipe.

Voltage Source  =  Pump + Tank + Big Pipe

Device/Circuit  =  Packed Pipe

The energy lost in the packed pipe by the water that flows 
through it is the same it took to pump the water into the 
tank:

    energy = weight X h
    weight = mass X g       (g is gravitational acceleration)
    mass   = volume X density  (let density = 1)
    volume =  Area X h

    energy = (Area X h X 1) X g X h

Here, we are assuming the volume of water that flowed is 
equal to the volume of the big pipe whose cross sectional 
area is Area. Because the big pipe is h tall, its volume is 
Area X h. Suppose we want to see how much energy an 
amount of water of mass m loses. We first find the energy 
lost per unit mass by dividing the above by the mass (Area 
X h X 1):

    energy-per-unit-mass  =  g X h

The energy from mass m is then:

    energy-m  =  m X g X h

Define V (short for voltage-across-the-
device) as (g X h):

     V = (g X h)

The energy for mass m is then,

    energy-m  =  m X V



A packed pipe with water flowing through it has more 
pressure on the inlet side than the outlet side. (If it were 
the other way around, the flow would go backward.) The 
pressure drops along the pipe. At the inlet side, the 
pressure is just the total weight of the water in the big 
pipe pressing down divided by its area:

    pressure-h  = (Area X h X 1) X g / Area

                          =  g X h

                          =  V

So, the voltage V is the same as the water pressure 
supplied by the source. Exit pressure is zero because 
the pump is pulling the water from that end of the pipe.

Suppose k units of water flow per second. The power 
loss in the device is,

       Power  =  energy-per-unit-mass  X  (k/sec)

                   =  V  X  (k/sec)

Current is i and is equal to (k/sec):

     Power  =  V  X  i

Electrons and water molecules are equivalent. They just 
differ in their respective fields (E and g) and the 
properties those fields affect (charge and mass). Power 
loss is heat (mostly). Note that we have used E and g 
interchangeably, and applied electrical terminology to 
water. 

Suppose our packed pipes can be modeled by Ohm's 
Law. Power loss is then proportional to the square of 
V. It can also be expressed as proportional to the square 
of i. (Both are shown at right.)

Note for unchanging V, that as resistance R goes to 0, 
the power loss goes to infinity. This is a short circuit. 
Before power loss actually goes to infinity, the heat will 
melt or vaporize the device. Of course, as R goes to 
infinity, nothing will flow, and no power is lost.



Voltage Divider

At right are two devices connected in series: Between 
them is a section of empty pipe whose resistance is 
relatively close to zero (wire).

The pressure (voltage) across device1 is the source 
voltage Vs minus the "output" voltage  Vout. The current 
exiting device2 has pressure Vg = 0. So, the voltage 
across device2 is Vout. 

The "output" of this system Vout depends on the two 
resistances, R1 and R2. The current i is the same 
through both resistors.

Suppose R2 is nearly 0 (a resistance-less wire). The 
total voltage difference over both resistors is (Vs - Vg) =  
Vs. The output voltage is the voltage difference across 
R2. Because R2 is about 0 (i.e., it has no packing, water 
passes through easily) 0 volts is almost all that is 
needed to move water through it. That is to say, no 
water pressure can build up on the inlet side of R2 
because when it starts to build up, water flows through 
before any pressure can build up. The current i is 
completely determined by R1. 

In the other extreme, suppose R2 is nearly infinite (an 
open circuit or switch). No matter how much pressure 
there is, almost no current flows. 

   i  =  (Vs - Vg) / (R1+R2)  =  Vs / (R1+R2)  ~  0 

 Pressure will build up as flow exits R1 and gets 
stopped by R2. Water would flow through R2 if the 
pressure at one end were different from the pressure at 
the other end. But, no current flows. So, the pressure at 
both ends must be the same. That is, Vout is the same 
as Vs.
              (Vs - Vout)  =  i R1  ~  0 R1  =  0 
                                      Vs ~ Vout 

  



We need Signal-Restoring, Non-Linear Logic. Ohm's Law devices are LINEAR.

Suppose we had only linear devices (or something very nearly linear), then signal output has 
errors proportional to input errors.

The errors include signs = random walk with random size steps.

Errors independently random w/ average 0  ==> variance increases w/ k.
Total error grows w/o bound!



Take random step (either in the -1 or +1 direction). 
How far from 0 can you expect to be after k steps? About k^1/2  away.
With probability 0 you will be at 0, and error gets unboundedly large.

We must Reduce error at each stage ==> exponentially decreasing effect in later stages.

If g is large enough (flat areas of curve are flat enough),

and

if output error size is not too big,

Then

output after k stages never hits FORBIDDEN ZONE.

So, if we plan to have a circuit with long device chains, we must 
have non-linear devices w/ suitable response curves.

Do we plan to have long chains? YES: 

(1) feedback in system,
(2) chained data operations: D1 ==> D2 ==> D3 ==> D4 ...
(3) 1 Billion devices per cpu



--- Non-linear response

--- Any voltage in allowed range 
will yield "clean" output. 

--- Easy to prevent forbidden 
input voltage.

Voltage Controlled Switch



Phosphorous impurity:

e- leaves easily, becomes "hot"

    conduction-band e- .

Boron impurity:
"cold" valence-band e- arrives, leaves behind +valence 

"hole"  which moves.

Holes and e- move in opposite directions, but current 

direction is same.

Easy e- flow from n-type to p-type, but reverse flow 

hard: "cold" valence-band e- need too much energy to 
become conduction band e-.

n-type MOSFET (n-transistor)

CONDUCTING ( Vgate = +V, R-drain-to-source ~= 0):

+V on gate drives holes away from P-type channel.

 Conduction-band e- move from source N-type well.
+V on drain pulls conduction-band e- off.

+I current flows left-to-right.

NOT-CONDUCTING ( Vgate = 0, R-drain-source = BIG)

Vgate = 0, holes populate channel.

Source N-well e- drop into valence band in channel.

+V at drain cannot pull valence-band e- from P-type to N-
type.

holes moving ==> 

e- moving <==

Just what we want: nice non-linear switch.



P-type (n-channel) transistor

Vgate = 0:

Vgate = -Vdd wrt to base,
pushes e- away from channel, leaves 

excess holes, current flows.

R = 0, conducting.

Vgate = Vdd:

Vgate = 0 wrt to base

channel is neutral
only random thermal e- available for 

current flow.

R = infinity, not conducting





Lithography



LC3 Intro/Review



.orig x3000

ld r1, six
ld r2, number
and r3,r3,#0

again add r3,r3,r2
add r1,r1,#-1
brp again

halt

number .blkw 1
six .fill x0006
msg               .string "abc"

.end

0011000000000000
0010001000000111
0010010000000101
0101011011100000
0001011011000010
0001001001100001
0000001111111101
1111000000100101
0000000000000000
0000000000000110
0000000001100001
0000000001100010
0000000001100011
0000000000000000

Assembler (lc3as) Directives (to control the assembly process):
.orig: puts a load address into the .obj load-object file's header.
.end: tells assembler, this is the end of source code.
.blkw: tells assembler, create n blank words (all zeroes).
.fill: tells assembler, put these bits into a word. 
.string: convert text to .FILL w/ one ascii code per word, NUL terminated.

The assembler produces machine code words:
---  ONE PER LINE expressing an LC3 instruction
---  ONE PER LINE where there is a .fill directive
---  n PER LINE where there is a .blkw directive
The assembler also calculates offsets for us using symbols. Symbols stand for 
memory addresses (starting for the .orig address). Offsets are calculated by 
subtraction. Symbols refer to the next instruction's location.



.orig x0200
main:

ADD R1, R2, R3
ADD R4, R5, var

foo:     .FILL x1234
var: .FILL x012F

.end

0000001000000000
0001001001000011
0001100101100001
0001001000110100
0000000100101111

0200:  0001001001000011
0201:  0001100101100001
0202:  0001001000110100
0203:  0000000100101111



main:    LD R3, var
             ...
var:      .FILL x023F

 symbol   value
"main"  x0200
"var"     x0208

0200:      0010 011 000000111
   ...                        ...
0208:      0000 0010 0011 1111



main:    LD R2, tablePTR
             LDR R1, R2, #2
                      ...
tablePTR:
              .FILL table
               ...
table:    .FILL x0000
             .FILL x0001
             .FILL x0002

"main"          x0200
"tablePTR"   x02F0
"table"           xFF00



Source Code
main:    LEA R3, array
               ...
array:    .BLKW 100

Symbol Table
"main"    x0200
"array"    x0210

Memory
0200:   1110 011 000001111
...            ...
0210:    ????
0211:    ????
...            ...

Source Code
main:    ADD R0, R0, 1
             BRp  main

Symbol Table
"main"     x0200

Memory
0200:  0001 000 000 0 00001
0201:  0000 001 111111110

9-bit offset:
PC +/- 256



Source Code:
main:      LEA R7, next
               BRnzp foo
next:       ADD R0, R1, #11

...
foo:        ADD R0, R1, #10
              JMP R7

...
JMP R7

TRAP x05

Moore FSM
--- Output not a function of input
--- Output determined by state only

Mealy
FSM








