
Lec-1a-tools SEE Tools Documentation, installation and usage:

 projects/LC3trunk/docs/README-

 -Electric -Subversion -verilog -unix

SUBVERSION (version control)

Two svn repositories:

 https://svn.cs.georgetown.edu/svn/projects/ (Course project materials)
 and
 https://svn.cs.georgetown.edu/svn/projects2/ (Course documents, project branches)

They both use the same username/password:

 250-374-developer y(&qwqsq

Copy URLs to a Web browser.
You will be prompted for a couple of reasons:

(1) Server's domain certificate cannot be authenticated. Accept as a permanent exception.
(2) Server asks for domain authentication (use username/password).
(3) Server's certificate cannot be authenticated. Accept as a permanent exception.
(4) Server authentication (use username/password).
----- The same prompts twice: Just do everything twice.

 NEVER do SVN IMPORT or EXPORT.

Getting a local copy

 svn co https://svn.cs.georgetown.edu/svn/projects/

 Local name of your working copy will be "projects"
 in your system's directory tree where you did svn co.

Problems? Erase your working (local) copy,

 /bin/rm -rf projects (BUT, move your changed work out FIRST)

Local rename your working copy is ok, but only the root:

 mv project MyWorkingCopyOfProjects

For help with commands,

 svn help

Typical commandline tools:

vi / emacs: editors
sh/ make: shell commands, build dependencies
grep: pattern matching in files
sed: stream editing
awk: stream editing w/ more complexity
m4/cpp: pre-processors

typical shell commands:

man info ls pwd cd rm mv cp exit echo cat
mkdir rmdir alias set which whereis
jobs, ctl-z, fg, %2, &
ps -ex, kill -6 (-9)
> >> | <
gzip, gunzip, compress, uncompress (.z)
tar

Things unix
processes, login shell, child processes, environment variables, open files, stdin, stdout

%> set #--- see all environment variables
%> echo $PATH #--- see PATH variable content (w/ ":" separators for sub-strings)
%> cd #--- your home directory in unix/cygwin environments
%> vi .bash_profile
 export VISUAL="vi" #--- needed for "svn ci" to edit log comments
%> ls #--- see files in current directory
%> cd foo; cd .. #--- move in file system tree
%> mkdir; rmdir #--- add/subtract sub-tree
%> rm #--- remove file, forever
%> pwd #--- see shell's idea of current position in file system
%> exit #--- kills current shell, returns to parent process
%> tar -xvf foo.tar #--- unpack a tree
%> gunzip foo.tar.z #--- uncompress a packed tree or file
%> man ls #--- see how to use the "ls" program
%> info ls #--- also see "ls" usage (more complete?)
%> alias l "ls -F" #--- make shorthand for a command
%> ps -ex #--- see all running/sleeping processes
%> kill -9 12345 #--- send a signal to process 12345 that kills it
%> jobs #-- see current jobs that are asleep
%> ^z #--- put jobs to sleep (e.g., editing session), return to parent
%> fg #--- wake up most recently slept process
%> %2 #-- wake up job 2
%> cat foo #--- dump file content to stdout
%> cat foo bar > foobar #---send content to file "foobar"
%> cat foo bar | grep "who" #--- send content to grep via stdin for subprocess
%> less foobar #--- see content a screenfull at a time
%> make target #--- read Makefile, find target, execute shell commands
%> cat foobar | sed 's/Hi/hi/' #--- stream editing, by lines
%> awk #-- more stream editing, by fields per line
%> m4 #--- input stream macro expansion
%> cpp #--- input macro expansion, C preprocessor ("#define", e.g.)
%> rm -rf workDir #--- destroy/remove entire local tree, including ".svn" sub-trees
%> cp foo ../bar/ #--- copy file or dir

 UNIX stuff you should know/review

SUBVERSION

Repository exists on svn server.
-- svn co https:URL/dir (get a "working copy" of subtree)
-- svn ci (send local changes to repository)
-- svn up (get changes from repository)
-- svn -v log (see svn ci log messages for subtree)

-- SVN commands apply to current subtree.
-- simultaneous, mulitple working copies.
-- svn co -r123 https:URL/dir
 (checkout prior version)
-- svn status (check for local changes)

svn add foo #--- mark file or directory "foo" to be added to repository
svn rm foo #--- deletes foo and schedules delete from repository
svn mv foo bar #--- deletes foo and adds bar
svn status #--- see state of working copy
 "?" unknown to svn, not part of repository.
 "M" modified, changes will be sent at next ci
 "A" will be added to repository
 "D" will be deleted from repository
 "!" missing locally, but in repository
 "C" conflicts: edits overlap prior checked in changes

svn copy URL/dir1 URL/dir2 #-- Start a new development branch: makes
 a copy of subtree, and starts new changelist.
svn merge (to join parallel trees)

Read Documentation in LC3trunk/docs

 Read the READMEs. Use a Web browser:

 NB--DOES NOT create a local working directory or files:
 you cannot
 ----- check-in/commit changes, svn ci
 ----- get updates, svn up

====== Subversion (SVN) Clients ==============

Subversion consists of two parts, a server, and a client. You only need a client. Most downloads will
include a server, but you do not need to set server up.

Is a commandline client svn installed as part of your OS?
If not, is an executable binary available? (Rather than downloading source code and building.)

--- Mac OSX 10.5 and later: use the terminal app.
 Get XCode (older ones are free), see Apple Developer Connection.

--- Windows: Avoid binaries for gui svn clients on the subversion web site.
You need a unix interface to windows anyway for iverilog; so, you should install cygwin:

 http://www.cygwin.com/

 setup.exe ===> Lots of selections you can make"
 --- Base: gzip, grep, sed, tar, which

--- Devel: gdb, make, subversion
--- Editors: emacs, vim
--- Net: openssl

 First install: take all defaults
 rerun later: select things to add

 CYGWIN users, SEE "A Note on Windows and Cygwin directory structure" below.

rm: if you delete a file w/o using svn rm, svn will think the file is missing
and will restore it when you next "svn up".

mv: if you rename a file w/o using svn mv, svn will think it is new (and
the old one missing). NB--svn mv will appear as a svn Delete/Add pair.

add: if you want something to become part of your repository svn add.

Do svn status before doing svn ci (committ). It tells you what the next
svn ci will do:

"?" file (or dir) is unknown, nothing will be done.
"M" file/dir is modified, changes will be sent.
"A" file/dir will be added to repository
"D" file/dir will be deleted from repository
"C" Conflict: you tried to commit changes that overlapped

with other changes already committed.

If your local copy is confused, you can completely erase it locally,
 /bin/rm -rf myDir
then re-checkout. If you have altered files, put them in a safe place first,
then do rm, then move them into your new working copy.

myDir/.svn

~/.subversion

Workflow:

--- Electric.File.OpenLibrary "myDir/trunk/lib/foo.jelib"
 ===> open lib files, then make changes.

--- in terminal window:
 cd myDir
 svn ci (write good comments in commit window.)

--- Electric.Tools.Simulation.WriteVerilogDeck
 ====> "myDir/trunk/run/foo.v" (create verilog file from design)

--- in terminal window:
 cd myDir/trunk/run
 iverilog foo.v (compile verilog)
 vvp a.out > foo_output (simulate)
 vi foo_output (check results)

--- go back to Electric, revise design.

DESIGN and SIMULATION

Tools and Workflow

--- get copy of your branch
--- build stuff, check in changes
--- compile to verilog
--- simulate, validate

AND(F, F) = F
AND(F, T) = F
AND(T, F) = F
AND(T, T) = T

Any n-ary function can be built as an
OR of minterms.

Minterms are ANDs of variables or
their negations.

projects/LC3-tools/electricBinary.jar

projects/LC3-trunk/examples/tutorial.jelib

Electric's names versus Verilog's names

Design is in a schematic cell: foo{sch}
Icon has its design in icon cell: foo{ic}
Hierarchy: place icon foo{ic} into bar{sch}

--- Get tutorial.jelib
 use Web browser
 download into your branch
 svn add

--- Open tutorial.jelib
 start ElectricBinary.jar
 ^File.OpenLibrary

--- See Documentation
 Electric.LeftPanel:
 ^Explorer tab
 ^^0AAA-ReadMe{doc}
 also see text boxes in schematics:
 ^^reg{sch}
 ^^regUsage{sch}

--- Create a cell
 ^Cell.NewCell
 set cell properties:
 Library[tutorial]
 Name: _________
 Type[schematic]

--- Place Blackbox in cell:
 ^Components.Schematic.{Black box}
 ^Components.Schematic.Misc.VerilogCode
--- Extract verilog code
 ^Tools.Simulation.(WriteVerilogDeck)

/* Verilog for cell 'ff{sch}' from library 'ff-lib' */
/* Created on Fri Jan 18, 2013 11:51:35 */
/* Last revised on Fri Jan 18, 2013 12:12:05 */
/* Written on Fri Jan 18, 2013 12:18:34 by Electric VLSI Design System, version 9.03 */

module ff();
 /* user-specified Verilog code */
 //*************************
 //** Y = m_1 + m_2
 //*************************
 /**/ reg srcX;
 /**/ reg srcY;
 /**/ assign X = srcX;
 /**/ assign Y = srcY;
 /**/ initial begin
 /**/ srcX = 0;
 /**/ #1
 /**/ srcX = 1;
 /**/ #1
 /**/ $display("X = %b", X);
 /**/ #1
 /**/ $finish;
 /**/ end

 wire X, Y, and_0_yc, and_0_yt, and_2_yc, and_2_yt, buf_0_c, buf_1_c, net_0;
 wire net_11, net_5, net_6, or_0_yc, or_0_yt, pin_16_wire;

 and and_0(net_5, net_0, X);
 and and_2(net_11, net_6, Y);
 not buf_0(net_0, Y);
 not buf_1(net_6, X);
 or or_0(Y, net_11, net_5);
endmodule /* ff */

Create Export (aka, a "port"):

--Place a pin into foo{sch} (wire/bus)
--Select the pin

^Export.CreateExport

--Fill in properties (name, input/output)

Change existing export's properties:

Select export's text (not pin)
 (shows highlighted X across pin)

Edit.Properties.ObjectProperties

and and_0(Y, A, B);

and and_1(.in0(A), .in1(B), .out(Z));

in Electric equivalent in Verilog
--------------------------------- --
Reg{sch} module tutorial_Reg(out)
Export, out[3:0], output output [3:0] out

instance of Reg{ic} named bar tutorial_Reg bar()

 bar.out[1:0]-to-a[1:0] connection .out({ ..., a[1], a[0] })

 equivalent syntax ..., .out[1](a[1]), .out[0](a[0])

The connections
between levels in a
hierarchy are expressed
as "Exports" in Electric
and as args in Verilog.
Electric trims away
redundant wires; so, the
busses dissappeared in
the Verilog code.

module tutorial__Reg(out);
 output [3:0] out;

 /* user-specified Verilog code */
 /**/
 /**/ reg [3:0] out;
 /**/

endmodule /* tutorial__Reg */

module regUsage(in, a, b);
 input [1:0] in;
 output [1:0] a;
 output [1:0] b;

 tutorial__Reg bar(.out({b[1], b[0], a[1], a[0]}));
endmodule /* regUsage */

Least time-stamp
simulation event pulled
from queue, executed,
new events posted to
queue.

MAKE and svn up

Keeping up-to-date with CourseDocuments:

 svn co URL/520-2013/CourseDocuments/

 URL=https://svn.cs.georgetown.edu/svn/projects2

 Creates a working copy of the CourseDocuments subtree on your machine.

Update periodically,

 cd 520-CourseDocuments
 svn up

MAKE can be a handy way of keeping commands and executing them. For example, here is a
possible Makefile (see below for notes on syntax):

 #------------------
 #-- Makefile
 #----------------
 URL=https://svn.cs.georgetown.edu/svn/projects2/520-2013
 AUTH= --username 250-374-developer --password 'y(&qwqsq'
 doCO::
 svn co $(URL)/CourseDocuments/ 520-CourseDocuments \
 $(AUTH)
 doUP::
 cd 520-CourseDocuments; svn up $(AUTH)
 #------ Makefile END

Next, use these unix commands,

 make doCO
 make doUP

I find this very handy. Also, if you are new to unix and/or make, it is a good way to get started.

Makefile syntax:

--- Makefile targets are "doCO" and "doUP".
 Make will look for the target "doCO" in the local Makefile.

 :: or : means, do the following commands for this target.
 The next line, the command, MUST start with a TAB character.

--- Makefile commands are shell commands
 Executed as if you had typed into the console.

 Command must be all on one line.

 But, if the command is long, use \ at the end of each line.
 Means: "Please ignore the end-of-line character and consider this to be all on one line."

--- Makefile variables

 Assignment is the same as shell syntax
 "FOO=abc" assigns the string "abc".

 $(FOO) or equivalently ${FOO} is replaced with the value "abc".

--- Multiple commands for a single target. Each command is on a separate line. E.g.,

 doUP::
 echo "Doing an svn update"
 svn up

 Each line forks its own shell to execute the commandline.
 This will not do what you might expect:

 doUP::
 echo "Doing an svn update"
 cd 520-CourseDocuments
 svn up $(AUTH)

 Forks three shells, one for each commandline.
 2nd shell does cd and exits.
 3rd shell does not execute in 520-CourseDocuments/ .

 BUT, a ";" separated list of commands is a "list command".
 Forks one shell to execute the list.

 cd 520-CourseDocuments; svn up

 The parent shell executes "cd" as a built-in without forking a child process.
 Then forks a process to do svn
 "svn" process inherits the current working directory from its parent.

A Note on Windows and Cygwin directory structures.

For Windows systems, cygwin and Windows do not agree on the shape of
the directory tree of the entire file system. For Windows, the actual
root is "C:\", e.g., if you are using your C: drive. Cygwin is usually
installed in C:\cygwin\ with your unix home below there. To get to
the Windows root, C:\, using cygwin, do this,

 cd /cygdrive/c/

Note that you have two home directories: (1) your cygwin home which
is in cygwin's /home/, and your Windows home, which is probably in,

 /cygdrive/c/Users/

It can get confusing. It is best to keep your work in your
unix home directory which is under /home.

