
Lec-1-HW-2-FiniteStateMachines

Build a finite state machine in Electric. Simulate it with verilog.

The machine is at right. It is a Moore machine: It's outputs are determined by which state it is in. E.g., 
if it is in state A, it outputs a 1. It has 1-bit input and 1-bit output. The output for each state is shown in 
the lower half of the state circle.

There are four states, so we need two 1-bit state elements to record which state we are in (two 1-bit 
D Flip Flops). The current state we will designate by the two bits, Q[1] Q[0] , or Q[1:0]. The next state 
is designated D[1:0]. The input is IN, the output is, OUT.

Here is the state encoding:

    Q[1]  Q[0]        machine state
   ---------------      ---------------------
       0     0                  A
       0     1                  B
       1     0                  C
       1     1                  D

Q.1 Write down the next-state function for this machine. The first two rows are done for you.

    Current State      IN      Next State
     Q[1]   Q[0]                     D[1]  D[0]
    ----------------------------     ---------------
       0        0             0          0       0
       0        0             1          0       1

Q.2 Write down the output function. The first two rows are done for you. IN is "X" for "don't care".

    Current State  IN     Output
     Q[1]   Q[0]               OUT
    -----------------------    --------
       0        0        X         1
       0        1        X         0

Q.3 We will implement both of these functions in a Read Only Memory (ROM). The memory words 
will be three bits wide in this format: Word[2:0]  =  { D[1], D[0], OUT }. That is, the low-bit is the current 
state's output, OUT, and the high bits are the next state, D[1:0]. Because there are three bits of input 
to the next-state function, we need eight words of ROM. Write down the ROM content. Address is in 
this format: ADDR[2:0] = { Q[1], Q[0], IN }. The first two rows are done for you.

ADDR[2:0]       ROM content, WORD[2:0]
--------------        -------------------------
    000                    001                         current-state=00 IN=0      next-state=00  OUT=1
    001                    011                         current-state=00 IN=1      next-state=01  OUT=1
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A library of parts (Lec-1-HW-2-parts.jelib) is provided for this 
assignment. You are to use these parts as basic building blocks. 
Do not use Electric's basic gates. The library includes a D latch 
w/ write enable (d-latch-we), shown at right. Two of these are 
used to implement a D Flip-Flop (D-FF) w/o write enable, also 
shown at right along with its icon. Our D-FF does not need a 
write-enable because it will always be written into on every clock 
tick. 

A clock is also provided (CLOCK). The clock will be important 
because the clock period must allow for propagation delays. The 
basic gates implemented here (AND, OR, NOT) have signal 
delays. You will need to adjust the clock pulses to match the 
longest signal delay through your logic's feedback loop from the 
output of the state elements to their inputs.

Q.4. Build a 1-bit, 8X1 MUX. A 1-bit, 2X1 MUX (MUX1_2X1) provided. 
Combine three to make a 1-bit, 4X1 MUX (call it MUX1_4X1). Next, use 
one MUX1_2X1 and two MUX1_4X1s to build a 1-bit, 8X1 MUX (MUX1_
8X1).

If you prefer, you can also do this by building a 3-input AND gate from 2-
input ANDs, and then use copies of it to produce all eight minterms. You 
would also need to build a tree of 2-input ORs to implement an 8-way OR.
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A note on icons.

When you create a cell, you then do View.MakeIconView, 

which creates the icon cell and its art work. These often do not 

look very good. Editing them requires just a couple of tricks: 
(1) Use Components.ArtWork instead of 

Components.Schematic. (2) To resize a box or relocate text, 

select the object, then Edit.Properties.ObjectProperties. Adjust 

x-y values as desired. (3) Exports can be in poor locations, but 

moving requires selecting one pin, move it, then select the 

other pin, and move it. Use arrows keys to move selected items. 

Also, rotate them by selecting the entire Export (both pins and 

wire), then use Edit.Rotate.sel[1:0]



Q.5. Use two MUX1_8X1s to build your ROM. Tie the inputs to logic 0 or 1 as appropriate to 
implement the FSM next-state and output functions above. Two logic elements are provided in 
the library that output logic values 0 or 1 (logic_0 and logic_1). The icon for logic_1 is shown.

Q.7. Complete the implementation of the FSM by connecting your two D Flip-Flops to your ROM, 
providing exports for input and output. A test bench cell (test{sch}) is also provided. Drop an 
instance of your FSM into it. You may delete its current content. Provide verilog code to drive the 
input and display the output and any other "interesting" signals. You may need to name a wire or 
bus so you can refer to it in your testbench code. Provide input to drive the FSM through several 
interesting state-transition paths. Remember the clock cycle may need adjusting. Comment on the 
result.

Q.8. The basic gates do not have initial values, and as a consequence it will take some time for the 
machine to establish its state. Usually at power on, the outputs of such physical devices settle to 0 or 
1 quickly, but which one is more or less random. Consider implementing additional logic to set the two 
state elements to initial values (which should be 0 and 0 from the description of the FSM above, 
because it starts in state 00). Without going into detail, suggest a plausible proposal for doing this 
initialization. No verilog code can be used, just logic gates.

Q.9. The start-up problem (we do not know what state the Flip-Flops will settle into) has another 
interesting feature. We do not model the ramp-up of device outputs. That is, real outputs do not 
simply drop to 0 or rise to 1. Instead, they take time to get there going through intermediate values 
between 0 and 1. The response curve for a transistor was show in lecture. The output responds to 
the input with some delay, as well. In a feedback loop, this make create a "meta-stable" condition in 
which the rising output feeds back to the input through some logic and becomes a falling input. This 
causes the output to reverse and begin to fall. This can happen at a very fast rate so that the Flip-
Flop never settles into one state or the other (see below). Comment on the effect of this type of 
situation on the FSM. What might you expect to see as output? Do you think it is possible to 
guarantee this will never happen? 



The circuit at right is equivalent to a latch. Below it is the 
voltage output of a single inverter, and the fall and rise 
times of an inverter (T_PHL and T_PLH). Suppose one 
inverter powers on. Its input voltage will be something 
random. Suppose both output voltages are random (~ 1.5 
v). Both inverters' inputs are thus also 1.5v. At 1.5v input, 
each inverter will start to ramp its output up (say 1.7v). But 
at 1.7v input, both outputs' response is about 1.3v. And at 
1.3v input both start to ramp up to 1.7v again. This can 
oscillate indefinitely, but usually one inverter will get ahead 
of the other fairly soon and drive the state into one of the 
two stable states. This is the start up problem. 

What to turn in: Check in your work to your branch. Submit in class on paper:
Name, course, year, HW assignment title
Answers to questions, comments on project files and simulations, difficulties, and suggestions.


