
Fast access
===> use map to find object

HW == SW
===> map is in HW or SW or combo

Extend range
===> longer, hierarchical names

How is map embodied:
--- L1?
--- Memory?

Big blocks : spatial locality
Big cache : lower miss rate
Associative : lower miss rate
Write back : less bandwidth
Multiple levels : lower avg penalty

The Environment

---- Long Latency
---- Low Bandwidth

Expand tag storage:
entry for every possible tag

tag == block address, aka block
number, is redundant, eliminate

Block ==> Page
Tag storage ==> Page Table
Cache Data ==> Memory pages

separate into
two parts

I'v got page table issues

--- Where are the page tables, physically?

 ===> memory? SRAM? Hardware?

--- If in memory, how many memory accesses to read one data item (ignore cache)?

--- If page tables are read/write

 ===> Can my program rewrite your page table (or my own, accidentally)?

--- If page tables are not read/write, how do they get pointer values?

 ===> Need protection bits per page: Kernel Mode 0: R/W, User Mode 1: no R/W
 ===> Where do protection bits go? How are they accessed?

--- It's nice to share memory, but why bother?

 ===> Principle of interleaving: long latency task? Go find other work to do.
 ===> OS has work to do, too.

--- What about I/O?

 ===> Is that done using virtual addresses? Memory mapped I/O device registers?

--- Speaking of I/O, what about long, slow I/O for disk blocks (pages)?

DMA is a processor, just does what PROC would have done.
PROC does other work (interleaving).
BUS-MASTER interleaves PROC and DMA requests

All User's have OS in same virtual area.

All virtual OS space is mapped identically for all users.

OS can turn off virtual addressing to access physical memory.

PTBR holds physical address of PT for fast access.

After mapping,
page tables can be
anywhere.

PTBR set by OS,
fast lookup of PTEs

Set dirty bit on write.

Set accessed bit on read or write.

Clear all accessed bits every k ticks.

Page Miss:
 --- evict page (ordered by preference):
 ---- 1. dirty == 0, accessed == 0
 ---- 2. dirty == 0, accessed == 1
 ---- 3. dirty == 1, accessed == 0
 ---- 4. dirty == 1, accessed == 1

get addr of PT

get PTE

get data

(NOTE: operations in hardware,
not instruction execution.)

Speed it up:
1. PTBR <== Page-table-location-pointer
 Do this once at program startup

2. Cache PTEs!

Read PDE, find PT disk address; Read PT page from disk;
Restart;
(after restart: becomes Case 1/1)

Page fault for PT as in case 0/1;
Restart;
(after restart, becomes Case 1/0)

E.G. Simple DM cache

---Use part of virtual address as tag
 (Page No. + or - some bits)

---Use other bits for index into cache
 (remainder is block offset)

--- Include PID, Accessed and Dirty bits, etc., in cache

--- Only translate on misses

--- L2 is a physical cache

Shared page
PT1: Mapped from V-Page x1234
PT2: Mapped from V-Page xFFFF
Both Map to frame x5678
(Cache data blocks are pages)

Process 1 writes

Process 2 reads

(Could also be multiple mappings
in same page table.)

Goal Invariant:
--- Never allow this to happen :-)
--- Shared data only appears once, at most.

Use some page offset bits
as index to DM cache.

Compare Page# in TLB in
parallel w/ cache access.

Form physical address using
frame# + offset.

Compare tag portion of
CMAR.

"Virtually Indexed, Physically
Tagged"

INCREASE ASSOCIATIVITY

1. Fixed Cache Size
 ---- fewer index bits
 ---- more tag bits

2. Increase Cache Size
---- same index bits
---- same tag bits

Originally

No limit checking
 ---- can overrun segment

No protection
 ----- can write segment registers

Segment registers implicit
 ----- instruction fetch: uses CS
 ----- data access: uses DS
 ----- stack operation: uses SS

Programmer's perspective:
 ---- Segments address from 0
 ---- Offset is address

Too Slow:
---- extend Seg Regs
---- cache Descriptor
 in Seg Reg
---- Check limit and R/W ...
Also:
---- Special Segs for Calls
---- "conforming" ==> change mode
---- 8k segments @ 4GB

Flat Addressing:
---- set all Descriptors:
---- BASE == x000000000
---- LIMIT == xFFFFFFFF
---- 1-to-1 w/ 32-bit MAR

Seg Selects CS, DS, SS can be written (change segments like original).
Descriptor table is OS controlled.

Also available in IA-32 (x86)

---- Paging mode (2-level and 3-level)
---- "Real" mode (acts like original)
---- Paged Segments (paging + segmentation: Segment Descriptor points to Page Directory)

---- Simulated machine is arbitrary (HW, ISA)

--- Virtual Machine (VM) is defined by
 simulation program.

--- VM's resources are in
 simulator program's data structures.

--- Interaction with host is through
 simulator's actions.

--- OS provides
 --- IO services
 --- isolation, protection

--- Small monitor provides
 Mapping to partitioned resources

--- Monitor is small, simple, reliable

--- Each guest runs in its own VM

--- VM is only virtual in the mapping
 Guest instructions run w/o emulation

--- Guest has same ISA as HW

--- Each VM has its own OS
 manages its own resources

Some advantages

--- Monitor-1 and Monitor-2 present
 identical virtual machines to guests

--- Guest migration is possible:
 uptime, bulk efficiencies

--- Multiple guests share pool of
 computing resources

--- Isolation between guests (?)

--- HW architecture can be different
 between hosts (degree?)

--- Run legacy apps on legacy VM.

--- Guest OS configuration specific to
 guest's apps.

OR

Binary translation (static or runtime):
--- Replace problematic instructions

OR

New hardware modes of execution.

x86 EFLAGS register, a
larger version of our LC3's
CC codes:

--- N, Z, P
--- Overflow
--- Carry
 ...
--- Interrupt Enable
 ...

POPF

All 32-bits written

IE bit not written

vmkernel:
--- boot loader
--- x86 abstraction
--- IO stacks (storage, network)
--- memory scheduler
--- cpu scheduler

VMM (vmkernel priviledged process):
--- Trapping, translation
--- one per VM

XEN

Have to rewrite the OS
--- use new ISA
===> more runs w/ VMM
===> faster

But
--- can't run original OS binaries
===> keeping up w/ the Joneses?

Trap references to page tables
 --- write protect guest PT

Adjust physical frame number
 --- use shadow page table

OR

Add HW second layer translation
(1960's IBM 370 solution)

How much overhead in a page miss?

G-OS: page fault, context switches, 100s of cycles
VMM: examine G-PT (find G-PA), 100s of cycles
VMM: find H-Phys-Addr, 100s of cycles
VMM: allocate/fill shadow PT 100s of cycles

--- kicks out needed data from cache
--- stalls processor

--- Cache data may be stale

Fix it:

---- Make buffer pages non-cacheable
 Too restrictive?

---- Invalidate cache blocks belonging to
 buffer just before IO? Lock pages to
 memory temporarily.

Read X
X <== X + 5
Write X

Read X
X <== X + 3
Write X

CPU-1

cache <== 2
cache <== 7
X <== 7

CPU-2

cache <== 7
cache <== 10
X <== 10

