Cache Qptim 3 oions

= Small and simple first level caches

= Critical timing path:
« addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data

= Lower associativity reduces power because fewer
cache lines are accessed
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m Toimprove hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= |-cache has better accuracy than D-cache
= First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-A8

m Extend to predict block as well
= “Way selection”
= |ncreases mis-prediction penalty
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= Pipeline cache access to improve bandwidth

= Examples:
« Pentium: 1 cycle
=« Pentium Pro — Pentium Ill: 2 cycles
« Pentium4 —Corei7: 4 cycles

= Increases branch mis-prediction penalty
m Makes it easier to increase associativity
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s Organize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

m [nterleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
4] 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte

addressing.
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General Principle: Keep working to hide latency
--- Can we find other work to do?

--- Do we have a mechanism for that?
--- Multiple threads (switching), out-or-order execution, loop unrolling

Nonblocking Caches

= Allow hits before to0r% ——
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complete
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--- We want latency = min = 36ns
--- We want to utilize full memory bandwidth

We have to be able to handle 18 concurrent misses.

We need a mechanism that can still find other work to do,
even though 18 instructions are queued waiting for data.



m Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives
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= \When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses
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= Loop Interchange

= Swap nested loops to access memory in
sequential order
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= Blocking

= |Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
locality of accesses
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s Fetch two blocks on miss (include next
sequential block)
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Pentium 4 Pre-fetching

= |Insert prefetch instructions before data is

needed
s Non-faulting: prefetch doesn’t cause
exceptions

m Register prefetch

= Loads data into register

s Cache prefetch

= Loads data into cache

= Combine with loop unrolling and software
pipelining
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Figure H.1 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the origi-
nal loop. The start-up and finish-up code will correspond to the portions above and
below the software-pipelined iteration.
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