Cache Qptim 3 oions

= Small and simple first level caches

= Critical timing path:
« addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data

= Lower associativity reduces power because fewer
cache lines are accessed

900 4 u 1-way o 2-way o 057 W 1-way [2-way
m 4-way @ 8-way tm e ® 4-way B 8-way
800 0.45
0.4
3 700 3
£ 2 0.35-
g 600 2
g § P
<] 0.3+ ol
£ s00- < @a
a T 0.25-
@ 400 2
£ g 02
8 300)
g 2 0.151
2 {=
200 u 0.1
100+ 0.05
0+ 04
16KB 32KB 64KB 128KB 256 KB 16 KB 32 KB 64 KB 128 KB 256 KB
Cache size ’,' Cache size .
—> 1% — —> Si3¢

m Toimprove hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= |-cache has better accuracy than D-cache
= First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-A8

m Extend to predict block as well
= “Way selection”
= |ncreases mis-prediction penalty

No Ur&}o

Way Select

Ignore other ways ==> DM D G

= Pipeline cache access to improve bandwidth

= Examples:
« Pentium: 1 cycle
=« Pentium Pro — Pentium Ill: 2 cycles
« Pentium4 —Corei7: 4 cycles

= Increases branch mis-prediction penalty
m Makes it easier to increase associativity

CMAR

r—/‘

\NBQJ?l

V f[fE $+4J"C,

&

Taag

Fdh Blok

Co\mpav’e

Tﬁjfﬁ

1 word data to processor per cycle
pipeline fill/drain overhead

pipeline hazard overhead

s Organize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

m [nterleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
4] 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte

addressing.

x)137 t“] t

Ae\&\\ =Y

1= Y l/ \L‘\:‘)t‘% \/,t:g

—

v
o

IR

o
1)
o~

Yk

General Principle: Keep working to hide latency
--- Can we find other work to do?

--- Do we have a mechanism for that?
--- Multiple threads (switching), out-or-order execution, loop unrolling

Nonblocking Caches

= Allow hits before to0r% ——
previous misses o0% [/\...I::::m_mr;:‘ |
complete
= “Hit under miss” JE S - ,/f \h
= “Hit under multiple [L Rt T
miss” g o .,,/: /\1 ‘\\‘1\
= L2 must support this { « et] \'\\ N
= In general, LR, Vel
processors can hide || \
L1 miss penalty but 0%
not L2 miss penalty

& FOOG E FE ORGP R ARG O P
LGP S
¥ o e}

E.G. 36 ws Qafenc
|6 G B/sec Mewory Bomduwith

é“f"“B GLC-Q\Q L,\eck p.mne%ueé"’

- =G m%vef}s sec - 7 ns
L refueﬂ"

Re Order l’)uﬁgr

Muﬁtv‘)h : Yy & re u<s+s/:ec
omshrvetions i vl Processor s A Cache
pending < K_\
w Memory
Rg{ QN\er,rj @t .
E ﬁ K¢ ‘&xl.l-s
t+3bws .
o e oI L] iy it pip
R\ [
One concurrent miss supported &n e e M — R){ m('\'t’ plf<
Mem bandwidth used: N———"
64B/36ns ~ 2 GB/sec ‘/8

How M) i W\Oj , oneuien r‘ﬁ"‘;&
(AN bR /exw{k? Do twe neeJ‘LLv%dMOUQ
* T+k gmwf&wd/mmo(mdkﬂtp

\‘
\ Two concurrent misses supported
Rl R
m m m m /k > 17/,,5 Bandwidth = 2(64B)/(k + 36)ns
NN

< 2(64/40) GB/sec

\
~ 3 GB/sec /
T+30 stk 3 g 8 5/
‘ : ?
M X U, QOY\(’,UY((Z\K{' mlsses uk Cam /W”ﬁ”fj" oot
at steady state, maximum request rate we can fulfill: ‘DE\ D
pipelined
required bandwidth = (1 req/4ns)(64B/req) = 16 GB/sec Ty Memory
As %113 oL ;ueuea,m
|

Sﬁd‘é/ N> o5

% /w%,ue,Js fuka, ,Qo(wjﬂ*} 36 ns ,Qaiwa\?

(36 ns latency / req) = n (steps down pipeline) (4ns / step)

&ﬂ " e o R.' _9R¢

N=9

Sw‘mpose_ L o
Collvsion (Ji#ereh"}' Linis) Cache

,Q,i LINE S
R, re 2ds i L come cache /{\
RJ rcm\ S W L} joca.'f{m)

Reorder &
eorqger UH:GY‘ Rrg,d(mcs R‘L M ‘Q‘)
I :3 = R/, Mfl)eM /C,i rc'}uM\A- £ execdes WAL

L Ri
Q = Rj whem RJ‘ Mizwzhs ; Wij—es ("‘PlMeS R; "’/ RJ.)

. R

— T

Collvsion (SA)MC jo/u.)

Reorder Buffe :
e oy e
RS, s hit oy 1 nag ik
1D = no‘H;wé_ (re%ucit R,Qru&«a Wd> 'Me,m,qg

T Svpposet 507 chmee %c«@m w/ prior rc%udf“s

[

K‘ e oo R, —>R¢

U dm lmrwé rtBlAMX wm pracess
P\n Rj Rk ¢ R'I — R¢ 1 o r‘n,aﬁack&&

IF
--- We want latency = min = 36ns
--- We want to utilize full memory bandwidth

We have to be able to handle 18 concurrent misses.

We need a mechanism that can still find other work to do,
even though 18 instructions are queued waiting for data.

m Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

(Vca}) \f\}2> — C“\AQ Crc«} mock\

(ﬁ:ab WZ} e cac\«\a

_—

restal m mr\‘f&

= \When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses

et —"_ (o] 1] |
(Blp / Meu\

= Loop Interchange

= Swap nested loops to access memory in
sequential order

}‘ e 010] z XO)O-}"

X o)|13

¥

S v, 0l *
‘\L[ﬂﬂ’ - %{z/ 03 s

\

X[Y\),kl =

= Blocking

= |Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
locality of accesses

/

|
e ;
(%z,;)ﬂ =YL 3+ 3Lk,

<P

i
7(-;@

ye- 6\’(\ er

To quLcQ\
RLocks tm MW

AN

A

3

e

s Fetch two blocks on miss (include next
sequential block)

1204 1.16

gap mef fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECInt2000 SPECIp2000

Pentium 4 Pre-fetching

= |Insert prefetch instructions before data is

needed
s Non-faulting: prefetch doesn’t cause
exceptions

m Register prefetch

= Loads data into register

s Cache prefetch

= Loads data into cache

= Combine with loop unrolling and software
pipelining

\-\avé war €

Prebetdh

“Sw eX cepjﬂt‘W\S (]C&u S)‘

lteration
0

lteration
1 lteration
2 Iteration
3 |ter3tion tr (/.V\S ENA@() CM;QJ% (Aa{' 4,5
ﬁ.fggﬁ.ﬁz K‘JV\S%(vo !(‘W\S
sehedud. tyher

Figure H.1 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the origi-
nal loop. The start-up and finish-up code will correspond to the portions above and
below the software-pipelined iteration.

Start-up Wind-down
code code
Number
of
overlapped
operations R
Time
(a) Software pipelining
Proportional
to nﬂﬁwber of Overiap between unvol|
unrolls unrolled iterations
— - =
Number
of
overlapped
operations
Time 1 \

(b) Loop unrolling

dépen}c,ncics —> Se ({A)T]L;ém

