
Manufacturing costs drop as expertise grows,
for that process

-- better methods
-- better equipment
-- less waste (time, materials)

Yield = 1 - waste

-- #(devices sellable) versus #(devices produced)

-- #(devices sellable) versus (cost to produce them)

Commodity market

--- lots of vendors
--- selling same items

Invest in largest demand ==> production cost amortized ==> larger profit
hot-new ==> high price / low volume ==> old-standard ==> low price

Standardization / Volume ====> market acceptance of innovations

--- Data is copied from memory to registers:
 red pebble on green

--- Operation done on register contents

--- Result written to register:
 red pebble on arc

--- Register reuse: copy registers to memory:
 green pebble on arc

Functional Programming

 Any step can be taken whenever ready

 C allocated in parallel with Loop unrolling

 Function returns before C is filled

 Each C_i waits for A_i and B_i

 Semantics are write once

 Synchronization is implicit

 individual tasks distributed as HW available

Loop unrolling

 s_i+1 = s_i + A_i + B_i

Synchroniztion?

 Write-Once semantics

Split-phase operation: asynchronous R/W requests
sent, asynchronous result returns value.

Good at hiding memory latency?

Good at tolerating high synchronization costs?

Note
"s" is current instruction,
"t" is next instruction

k is entry point for g.
context "g" is for this
invokation of g().

Note
Destination of arc depends
on left input value.

Note:
Return token could be sent
before completion (not for
g() though).

g's computation can begin
before args arrive.

transaction processor
+
storage

Can have other R/W protocols
(not Write-Once only)

Can have active memory:
operations in memory unit.

Cannot de-allocate while tokens exist in function call for
context i.
==> Well-behaved graphs
1. initially, no tokens
2. given one token on every input, one token produced per
output
3. after all output tokens produced, graph is empty.

Well behaved

Trigger output tokens
have same address

Value output tokens
have same address

Triggers only when all
inputs have arrived
and output token is
ready

