

DRAM Unit Volume by Generation [37]

Invest in largest demand ==> production cost amortized ==> larger profit hot-new $==$ > high price / low volume $==$ > old-standard $==$ > low price

Standardization / Volume ====> market acceptance of innovations

Cloud Pricing \AWS Combined efficiencies

$$
\mathsf{CPU}_3, \; \mathsf{Chips}_3, \; \mathsf{SOC}
$$

$$
s_i
$$
 implies slicing \rightarrow wafers

masking, etching, doping

Circuit testing

Pad Bonding

board
printing mounting

Pin Packaging

encasing

what's inside?

 $P5$

Cost =
$$
C_{\text{die}} + C_{\text{Test}, t} C_{\text{package}} + C_{\text{ref}_2}
$$

\n
$$
\frac{C_{\text{die}} + C_{\text{Test}, t} C_{\text{package}} + C_{\text{ref}_2}}{\text{% (selfable units)}}
$$

$$
C_{\text{die}} = C_{\text{water}} / (\text{*} \text{dies})(\text{yield})
$$

 Cu of $\alpha \approx 15000$

$$
\mathcal{K}(dies) = \left(\frac{Area_{water}}{Area_{die}}\right) - \left(\frac{Circumference_{Water}}{Diagonal_{die}}\right)
$$

$$
= \frac{\pi r^2}{A_{die}} - \frac{2\pi r}{\sqrt{2}L_{die}}
$$

$$
yield \cong \frac{\mathcal{K}(9^{ood} \text{ wafers}) / \mathcal{K}(\text{wafers})}{\left[1 + \mathcal{K} \frac{(\text{defects})}{\text{cm}^2} (A_{\text{die}} \text{cm}^2) \right]^N}
$$

Curve fitting => N E [11.5, 15.5]

$$
\frac{\frac{36}{2}(\frac{1}{6} + \frac{1}{6}x)}{6x} \approx \frac{0.04}{-6} \text{ fraction } \frac{1}{3} \text{ times } + \text{ volume}
$$
\n
$$
\frac{95}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{2 \times 8 \text{ mm}}{10} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times 8 \text{ mm}} = \frac{60}{-6} \text{ cm}^2
$$
\n
$$
\frac{1}{20 \times
$$

Figure Rate =
$$
VMTTF
$$

\nMean Time Between Falures (MTBF) = MTF + MTTR

\nRecover

\nRecover

\nSwalability = 7 d time working = $\frac{MTTF}{MTBF}$

\nExample 7. 10 Jisks, MTTF = 1 Mhr

\n1 Rm

\n1 1 ATR

\n1 1 ALM

\n

Poisson

Bernoulli w/p =
$$
\lambda
$$
 dt
flip coin w/Prob = p = λ dt

$$
P(m, N, p) = {N \choose m} p^m q^{N-m}
$$

$$
\Rightarrow \frac{e^{-pN} (pN)^{m}}{m!}
$$
\nLet $pN =$

λ

$$
P(m,\lambda) = \frac{e^{-\lambda t}(\lambda t)^m}{m!}, \lambda =
$$
 rate

$$
P(X_n - x) = 1 - e^{-\lambda x}
$$

 $E(X) = Y_2$

1.1 Point Processes

Definition 1.1 A simple point process $\psi = \{t_n : n \geq 1\}$ is a sequence of strictly increasing points

$$
0 < t_1 < t_2 < \cdots,\tag{1}
$$

with $t_n \longrightarrow \infty$ as $n \longrightarrow \infty$. With $N(0) \stackrel{\text{def}}{=} 0$ we let $N(t)$ denote the number of points that fall in the interval $(0, t]$; $N(t) = \max\{n : t_n \le t\}$. $\{N(t) : t \ge 0\}$ is called the counting process for ψ .
If the t_n are point t_0 at the origin and define $t_0 \stackrel{\text{def}}{=} 0$. $X_n = t_n - t_{n-1}$, $n \ge 1$, is called the n^{th} interarrival time.

We view t as time and view t_n as the n^{th} arrival time. The word simple refers to the fact that we are not allowing more than one arrival to ocurr at the same time (as is stated precisely in (1)). In many applications there is a "system" to which customers are arriving over time

1.2 Renewal process

A random point process $\psi = \{t_n\}$ for which the interarrival times $\{X_n\}$ form an i.i.d. sequence is called a renewal process. t_n is then called the n^{th} renewal epoch and $F(x) = P(X \leq x)$ denotes the common interarrival time distribution. The $rate$ of the renewal process is defined as $\lambda \stackrel{\text{def}}{=} 1/E(X)$.

$$
P(m, N, p) = \frac{N!}{m!(N-m)!} p^m q^{N-m}
$$

$$
\frac{N!}{(N-m)!} = \frac{N(N-1)\cdots(N-m+1)(N-m)!}{(N-m)!} = N^m
$$

$$
q^{N-m} = (1-p)^{N-m} = 1 - p(N-m) + \frac{p^2(N-m)(N-m-1)}{2!} + \cdots \approx 1 - pN + \frac{(pN)^2}{2!} + \cdots \approx e^{-pN}
$$

$$
P(m, N, p) = \frac{N^m}{m!} p^m e^{-pN}
$$

$$
P(m, \mu) = \frac{e^{-\mu} \mu^m}{m!}
$$

1.3 Poisson process

Definition 1.2 A Poisson process at rate λ is a renewal point process in which the interarrival time distribution is exponential with rate λ : interarrival times $\{X_n : n \geq 1\}$ are i.i.d. with common distribution $F(x) = P(X \le x) = 1 - e^{-\lambda x}, x \ge 0$; $E(X) = 1/\lambda$.

$$
P(N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, k \ge 0.
$$
 when **k** over **k**

 $Simulating \ a \ Poisson \ process \ at \ rate \ \lambda \ up \ to \ time \ T:$

- 1. $t = 0, N = 0$
- 2. Generate ${\cal U}.$
- 3. $t = t + [-(1/\lambda) \ln(U)]$. If $t > T$, then stop.
- 4. Set $N = N + 1$ and set $t_N = t$.
- $5. \,$ Go back to $2. \,$

ü

Suppose that for a Poisson process at rate λ , we condition on the event $\{N(t) = 1\}$, the event that exactly one arrival ocurred during $(0, t]$. We might conjecture that under such conditioning, t_1 should be uniform

$$
P(t_1 \le s | N(t) = 1) = \frac{P(t_1 \le s, N(t) = 1)}{P(N(t) = 1)}
$$

=
$$
\frac{P(N(s) = 1, N(t) - N(s) = 0)}{P(N(t) = 1)}
$$

=
$$
\frac{e^{-\lambda s} \lambda s e^{-\lambda(t-s)}}{e^{-\lambda t} \lambda t}
$$

=
$$
\frac{s}{t}.
$$

Assuming measured
$$
k \approx E(k)
$$
 $\Rightarrow p = k/n$

Assuming X is a unit time interval,
$$
kt \times = \{x_1, x_2, x_3, ..., x_n\}
$$

\n $x_x = \{1, \text{ twice nothing during period } i$
\n $x_x = \{6, \text{ divide foils} \text{ in period } i$
\n $Prob(failune at k) = Prob(withing for k intervals) \times Prob(failin(kn) interval)$
\n $= p^k (1-p) = p^k q$
\n $E(k) = \sum_{k=1}^{\infty} k p^k q = q \sum_{0}^{\infty} k p^k = q p \sum_{0}^{\infty} \frac{1}{p} p^k - q p \frac{1}{4} p \sum_{0}^{\infty} p^k = p \frac{1}{4} \left(\frac{1}{1-p}\right)$
\n $= \frac{1}{3} \frac{p}{(1-p)^2}$
\n $= \frac{1}{3} \frac{p}{(1-p)^2} = \frac{1}{2} \Rightarrow m \text{ in } T = \frac{1}{2} \Rightarrow p \text{ in } T = \frac{$

$$
MTF_{\lambda} = \mathcal{P}_{\ell} = \frac{1 - (1 - \rho^{2})}{(1 - \rho^{2})} = \frac{\rho^{2}}{1 - \rho^{2}} = \frac{\rho^{2}}{(1 - \rho)(1 + \rho)} = \frac{1}{\rho} \frac{1}{(1 + \rho)}, \quad \text{for } \rho \approx 1
$$
\n
$$
\approx P_{\ell} (\frac{1}{2}) = \frac{1}{2}MTF_{1}
$$
\n
$$
P_{\text{rob}}(\lambda^{n}) \text{ does } \text{fail in } MTTR
$$

$$
\approx \frac{MTTR}{MTTF}, \qquad \qquad \rho = \rho \Delta T \qquad \qquad \rho = \lambda dt
$$
\n
$$
\rho(x) = \rho_{12}(x \text{ mTR}) \rho(\text{mTR}) \qquad \qquad \rho = \frac{1}{MTF}, \qquad \qquad \rho = \frac{1}{MTF}
$$

$$
P(x) = P_{12}(x-m11k)P(m11k)
$$

$$
E(x) = \frac{1-P}{P} = \frac{1-\left(\frac{2}{M11f}\right)\left(\frac{M11f}{M11f}\right)}{\sqrt{1+\frac{2}{M11f}}\left(\frac{M11f}{M11f}\right)} \approx \frac{(M11f)^{2}}{2.911f}
$$

Dataflow Graph

--- Data is copied from **memory** to **registers: red** pebble on **green**

- --- Operation done on register contents
- **--- Result** written to **register: red** pebble on arc
- --- **Register reuse**: copy **registers** to **memory**: **green** pebble on arc

$$
\begin{array}{c}\n\bigcup e_{0} \quad \text{Vsum A} \quad B = \\
\bigg\{ \quad C = \text{array } (1, n) : \\
\bigg\{ \quad \text{for } i \neq n \\
 C_{i} \quad \leftarrow A_{i} + B_{i} \quad \text{if } C_{i} \quad \
$$

Functional Programming

Any step can be taken whenever ready

C allocated in parallel with Loop unrolling

Function returns before C is filled

Each C_i waits for A_i and B_i

Semantics are write once

Synchronization is implicit

individual tasks distributed as HW available

Note "s" is current instruction, "t" is next instruction

by function body (same)

==> Well-behaved graphs

1. initially, no tokens

2. given one token on every input, one token produced per output

3. after all output tokens produced, graph is empty.

