

DRAM Unit Volume by Generation [37]

Invest in largest demand ==> production cost amortized ==> larger profit hot-new ==> high price / low volume ==> old-standard ==> low price

Standardization / Volume ====> market acceptance of innovations

Cloud Pricing AWS Combined efficiencies

Description	Type	CU	Original \$ / CU / Hour	Current \$ / CU / Hour	% Reduction	Aug 2006	Oct 2007	May 2008	Oct 2009	Feb 2010	July 2010	Sep 2010	Nov 2010	Nov 2011
Small - "the original"	m1.small		\$0.10	\$0.085	15%	\$0.10		_	\$0.09					_
Large	m1.large	4	\$0.10	\$0.085	15%	\smile	\$0.40		\$0.34	-	Price			
Extra Large	m1.xlarge	8	\$0.10	\$0.085	15%		\$0.80		\$0.68	-	Reductions			
High-CPU Medium	c1.medium	5	\$0.04	\$0.03	15%			\$0.20	\$0.17	1				
High-CPU Extra Large	c1.xlarge	20	\$0.04	\$0.03	15%			\$0.80	\$0.68					
High-Memory Double Extra Large	m2.2xlarge	13	\$0.09	0.077	17%				\$1.20			\$1.00		
High-Memory Quad Extra Large	m2.4xlarge	26	\$0.09	0.077	17%				\$2.40			\$2.00		
High Memory Extra Large	m2.xlarge	6.5	\$0.12	0.077	33%					\$0.75				
Cluster Compute	cc1.4xlarge	33.5	\$0.05	\$0.04	19%						\$1.60			
Cluster Compute Eight Extra Large	cc2.8xlarge	88	\$0.03	\$0.03	0%									\$2.40
Micro	t1.micro	0.9	\$0.02	\$0.02	0%							\$0.02		
Cluster GPU Instance	cg1.4xlarge	33.5	\$0.06	\$0.06	0%								\$2.10	

masking, etching, doping

Circuit testing

Pad Bonding

board printing mounting

Pin Packaging

encasing

what's inside?

P5

 $Cost = \frac{C_{die} + (T_{est_1} + C_{package} + C_{T_{est_2}})}{(Sellable units)}$

Cwafer ≈ \$5000

yield
$$\simeq \frac{(good wafers)}{\left[1 + \frac{(defects)}{cm^2} \left(A_{die} cm^2\right)\right]^N}$$

Curre fitting => N e [11.5, 15.5]

Failure Rate =
$$\frac{1}{MTTF}$$

Mean Time Between Failures (MTBF) = MTTF + MTTR
Availability = 7 time working = $\frac{MTTF}{MTBF}$
 $\frac{MTTF}{MTBF}$
 $\frac{1}{2}$ Disk sub-system
10 disks, MTTF = 1 Mhr
1 ATA controller, MTTF = $\frac{1}{2}$ Mhr
1 fan , MTTF = $\frac{1}{2}$ Mhr
1 fan , MTTF = $\frac{1}{2}$ Mhr
1 ATA coble, MTTF = 1 Mhr
1 ATA coble, MTTF = 1 Mhr
1 ATA coble, MTTF = $\frac{1}{2}$ Mhr
1 ATA coble, MTTF = $\frac{1}{2}$ Mhr
1 ATA coble , MTTF = $\frac{1}{2}$ Mhr
1 $\frac{1}{4}$ Mhr
1 $\frac{1}{4}$ Mhr
1 $\frac{1}{4}$ MTF = $\frac{2}{4}$ ($\frac{1}{4}$) $\frac{1}{4}$ ($\frac{1}{4}$)

Poisson

$$P(m, N, p) = \binom{N}{m} p^m q^{N-m}$$

$$= \sum_{\substack{e \in PN \\ m!}} \frac{e^{-pN} (pN)^{m}}{m!}$$

λ

$$P(m, \lambda) = \frac{e^{-\lambda t} (\lambda t)^m}{m!}, \quad \lambda = rate$$

$$P(X_{n} = \chi) = |-e^{-\lambda\chi}$$

 $E(X) = Y_{\lambda}$

1.1 Point Processes

Definition 1.1 A simple point process $\psi = \{t_n : n \ge 1\}$ is a sequence of strictly increasing points

$$0 < t_1 < t_2 < \cdots$$
, (1)

with $t_n \longrightarrow \infty$ as $n \longrightarrow \infty$. With $N(0) \stackrel{\text{def}}{=} 0$ we let N(t) denote the number of points that fall in the interval (0, t]; $N(t) = \max\{n : t_n \le t\}$. $\{N(t) : t \ge 0\}$ is called the counting process for ψ . If the t_n are random variables then ψ is called a random point process. We sometimes allow a point t_0 at the origin and define $t_0 \stackrel{\text{def}}{=} 0$. $X_n = t_n - t_{n-1}, n \ge 1$, is called the n^{th} interarrival time.

We view t as time and view t_n as the n^{th} arrival time. The word simple refers to the fact that we are not allowing more than one arrival to ocurr at the same time (as is stated precisely in (1)). In many applications there is a "system" to which customers are arriving over time

1.2 Renewal process

A random point process $\psi = \{t_n\}$ for which the interarrival times $\{X_n\}$ form an i.i.d. sequence is called a renewal process. t_n is then called the n^{th} renewal epoch and $F(x) = P(X \le x)$ denotes the common interarrival time distribution. The rate of the renewal process is defined as $\lambda \stackrel{\text{def}}{=} 1/E(X)$.

$$P(m,N,p) = \frac{N!}{m!(N-m)!} p^m q^{N-m}$$

$$\frac{N!}{(N-m)!} = \frac{N(N-1)\cdots(N-m+1)(N-m)!}{(N-m)!} = N^m$$

$$q^{N-m} = (1-p)^{N-m} = 1 - p(N-m) + \frac{p^2(N-m)(N-m-1)}{2!} + \dots \approx 1 - pN + \frac{(pN)^2}{2!} + \dots \approx e^{-pN}$$

$$P(m,N,p) = \frac{N^m}{m!} p^m e^{-pN} \qquad P(m,\mu) = \frac{e^{-\mu}\mu^m}{m!}$$

1.3 Poisson process

Definition 1.2 A Poisson process at rate λ is a renewal point process in which the interarrival time distribution is exponential with rate λ : interarrival times $\{X_n : n \ge 1\}$ are i.i.d. with common distribution $F(x) = P(X \le x) = 1 - e^{-\lambda x}, x \ge 0; E(X) = 1/\lambda$.

$$P(N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \ k \ge 0.$$
 It even to the transformed to the second s

Simulating a Poisson process at rate λ up to time T:

- 1. t = 0, N = 0
- 2. Generate U.
- 3. $t=t+\left[-(1/\lambda)\ln\left(U\right)\right]$. If t>T, then stop.
- 4. Set N = N + 1 and set $t_N = t$.
- 5. Go back to 2.

...

Suppose that for a Poisson process at rate λ , we condition on the event $\{N(t) = 1\}$, the event that exactly one arrival ocurred during (0, t]. We might conjecture that under such conditioning, t_1 should be uniformly distributed over (0, t). To see that this is in fact so, choose $s \in (0, t)$. Then

$$\begin{split} P(t_1 \leq s | N(t) = 1) &= & \frac{P(t_1 \leq s, N(t) = 1)}{P(N(t) = 1)} \\ &= & \frac{P(N(s) = 1, N(t) - N(s) = 0)}{P(N(t) = 1)} \\ &= & \frac{e^{-\lambda s} \lambda s e^{-\lambda (t-s)}}{e^{-\lambda t} \lambda t} \\ &= & \frac{s}{t}. \end{split}$$

$$\frac{1}{1} \operatorname{ndependent}, \operatorname{Random} \operatorname{faults}$$

$$\frac{1}{1} \operatorname{ndependent}, \operatorname{Random} \operatorname{faults}$$

$$\frac{1}{1} \operatorname{biased coin} \quad u/ \quad \operatorname{Prob}(\operatorname{failed}) = p$$

$$\operatorname{Prob}(\operatorname{failed}) = (1-p)$$

$$\operatorname{cointoses, independent, constant p$$

$$\Rightarrow x = \{x_1, x_2, \ldots\} \quad x_i = \{\begin{smallmatrix} 0 \\ 1 \\ 1 \\ \ldots \\ v \in \{0, 1\}^n \quad \operatorname{Prob}(x=v) = p^r (1-p)^{n-r} \quad [\text{ strones}(v) = r]$$

$$\operatorname{System state} \Rightarrow A(X) \in \{0, 1\} \Rightarrow \begin{cases} \operatorname{System is working} : A(X) = 1 \\ \operatorname{System has failed} : A(X) = 0 \end{cases}$$

$$\operatorname{Serves} \operatorname{System} \operatorname{State}$$

$$\operatorname{working}(X) = \begin{cases} 0, \operatorname{arme} x_i = 0 \\ 1, \operatorname{all} x_i = 1 \end{cases} \Rightarrow \operatorname{Prob}(\operatorname{failed}) = 1-p^n \quad [\operatorname{strones}(X) = n]$$

$$\operatorname{Randold} \operatorname{System}$$

$$\operatorname{working} = \begin{cases} 0, \operatorname{arte} x_i = 0 \\ 1, \operatorname{state} x_i = 1 \end{cases} \Rightarrow \operatorname{Prob}(\operatorname{failed}) = (1-p)^n \quad [\operatorname{strones}(X) = n]$$

$$\operatorname{Paradold} \operatorname{System}$$

$$\operatorname{corking} = \{0, \operatorname{arte} x_i = 0 \Rightarrow \operatorname{Prob}(\operatorname{failed}) = (1-p)^n \quad [\operatorname{strones}(X) = n]$$

$$\operatorname{Paradold} \operatorname{System}$$

$$\operatorname{corking} = \{0, \operatorname{arte} x_i = 1 \\ 0, \operatorname{durines}_i \text{ article} \text{ arter} x_i = 1 \\ \operatorname{Prob}(\operatorname{failed}) = (1-p)^n \quad [\operatorname{strones}(X) - n]$$

$$\operatorname{Tate} n \operatorname{deurice}, \operatorname{rew} \text{then for } t \operatorname{hrs}$$

$$\frac{k}{2} \operatorname{unking} \quad x_i = \{1, \operatorname{deuxe}_i \text{ arter} x_i = 1 \\ 0, \operatorname{deuxe}_i \text{ failed} \text{ arter} x_i = 1 \\ \operatorname{Prob}(\operatorname{failed}) = 1-(1-p)^n \quad [\operatorname{strone}(X) - n]$$

$$\operatorname{Tate} n \operatorname{deurice}, \operatorname{rew} \text{then for } t \operatorname{hrs}$$

$$\frac{k}{2} \operatorname{unking} \quad x_i = \{1, \operatorname{deuxe}_i \text{ arter} x_i = 1 \\ 0, \operatorname{deuxe}_i \text{ failed} \text{ areadold} x_i = 1 \\ 0, \operatorname{deuxe}_i x_i = 1 \\ 0, \operatorname{deuxe}_i x_i = 1 \\ 0, \operatorname{deuxe}_i x_i = 1 \\ \operatorname{strones} x_i = 1 \\ \operatorname{strones} x_i = 1 \\ \operatorname{deuxe} x_i = 1 \\ \operatorname{strones} x_i = 1 \\ \operatorname{$$

Assuming measured
$$k \approx E(k) \Rightarrow p = k'_n$$

Assuming t is a unit time interval, let
$$X = \{X_1, X_2, X_3, ..., X_n\}$$

 $X_x = \{0\}$ device working during period i
 $P_{rob}(failure at k) = Prob(working for h intervals) \times Prob(fail in (h+1) interval))$
 $= p^k (1-p) = p^k g$
 $E(h_k) = \sum_{h=1}^{\infty} k p^h g = g \sum_{h=h}^{\infty} p^k = g p \sum_{h=h}^{d} p^h = g p$

$$MTTF_{2} = \frac{p}{Q} = \frac{1 - (1 - p^{2})}{(1 - p^{2})} = \frac{p^{2}}{1 - p^{2}} = \frac{p^{2}}{(1 - p)(1 + p)} = \frac{p}{q} \frac{p}{(1 + p)}, \quad \text{for } p \approx 1$$

$$\approx \frac{p}{q} \left(\frac{1}{2}\right) = \frac{1}{2} MTTF_{1}$$

Prob(2ⁿ does fail in MTTR)

$$\approx \frac{MTTR}{MTTF}, \qquad P = \rho \Delta T \qquad p = \lambda dt$$

$$P = \int dt \qquad p = \int dt$$

$$P = \int dt \qquad P = \int dt$$

$$P = \int dt \qquad P = \int dt$$

$$P = \int dt$$

$$P = \int dt$$

$$P(x) = P_{1-2}(x - m\pi R)P(m\pi R)$$

$$\mathcal{E}(x) = \frac{1-P}{P} = \frac{1 - (\frac{2}{m\pi F})(\frac{m\pi R}{m\pi F})}{(\frac{1-1}{m\pi F})(\frac{m\pi R}{m\pi F})} \approx \frac{(m\pi F)^{2}}{2m\pi R}$$

Dataflow Graph

- --- Data is copied from memory to registers: red pebble on green
- --- Operation done on register contents
- --- Result written to register: red pebble on arc
- --- Register reuse: copy registers to memory: green pebble on arc

Functional Programming

Any step can be taken whenever ready

C allocated in parallel with Loop unrolling

Function returns before C is filled

Each C_i waits for A_i and B_i

Semantics are write once

Synchronization is implicit

individual tasks distributed as HW available

Good at tolerating high synchronization costs?

by function body (same)

1. initially, no tokens

2. given one token on every input, one token produced per output

3. after all output tokens produced, graph is empty.

