
I. The maximum physically-addressable memory of machine M is 1024-GB (1-TB). M has 64-bit words, 64-bit virtual 
addresses, and memory is byte-addressable. Pages are 16 kB.

Q.1. How many bits wide is a TLB entry for M? Only the minimum number of bits needed to do address 
translation should be included. Also include 4 bytes of other page table information (such as PID, 
permissions, and so forth). Because TLB entries are read from memory, round up to an integer number of 
words.
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I (continued). M's L1 cache is virtually indexed, virtually tagged, 4-way set-associative, with 4-word blocks. Its total 
data size is 512 kB. L2 has 32 MB of data, is 8-way associative, physically indexed and tagged, with 8-word blocks.

Q.2. How many bits wide are L1 and L2 cache entries? Both have 1 valid, 1 dirty, 2 LRU, and 16 PID bits.

NAME: ____________________________________________

Open book, open notes (laptops are ok). Partial credit is important; so, explain what you are doing in each question. 
Do not answer any question with only a number or similar unexplained answer. That will get you very little credit. 
Show your work, use the back of the pages as needed, but indicate which problem.



I (continued). Register $3 = 0x000000000041FFB8 just before the following instructions are executed:

            LW   $11, 0x0( $3 )
            SUBi $3, $3, 0x100000
            LW    $12, 0x0( $3 )
            SUBi $3, $3, 0x100000
            LW    $13, 0x0( $3 )
            SUBi $3, $3, 0x100000
            LW    $14, 0x0( $3 )
            SUBi $3, $3, 0x100000
            LF16 $F2, 0x0( $3 )

LF16 loads 16B from the memory location specified by 0x0( $3 ) into the double-precision floating-point register, $F2.
SUBi subtracts the immediate value from $3.

Q.3. What is the address of the low-order 64-bit word accessed by the LF16 instruction (show in hex)?

Q.4. What is the high-order 8B-word's address?

Q.5. What is the low-order word's L1 cache index? What is its L1 tag? Show in binary and hex. Use 
"0...0" for repeated hex or binary zeroes.

Q.6. What is the high-order word's L1 cache index? What is its L1 tag?



Q.7. Suppose some block in L1 with index xFFE and tag 0 is valid. Does the LF16 instruction's data 
access hit or miss in L1?

Q.8. What is the page number for the LF16 instruction's data access?

Q.9. What two L2 indices does the LF16 instruction's data access have?   Give binary and hex. What is the 
L2 tag?

I (continued). The page table has this entry at index x0...07:

     [ F# = x1234567 (26 bits) , valid = 1, PID = 2367, dirty = 1, LRU = 3, RWX = 100 ]



Q. If L1 misses for both words for the LF16 instruction, and the tag x12345 is not in a valid L2 cache line, 
how many words of memory must be read from main memory (there is no L3)? How many words of data 
must be communicated in total (both memory-to-cache and L2-to-L1 reads)? Ignore writing dirty blocks for 
evicted cache lines and communicating addresses.



I (conitinued). Shown below are two virtual memory address registers (VMAR). They are the same register with two 
separate sets of wires tapping its outputs in parallel: one goes directly to L1, the other to the TLB for address translation 
and then on to L2. The TLB shows that pages 0 and xF map to physical frame 5. L1 shows a valid block with virtual tag 
0, and a valid block with virtual tag 1. (Their positions do not indicate their L1 indices.) This is the synonym problem: 
two virtual addresses refer to the same physical address whose block appears twice in L1. Below is shown an address 
whose virtual tag is 0 that maps to the same physical word as another address whose tag is 1.

0      ...         0 0 0 0 0 0 ... 0 0 0 0 0 0

0    ...   0 0 1 0 1 0 ... 0 0 0 0 0 0

0      ...         0 1 _ _ _ 0 ... 0 0 0 0 0 0

0    ...   0 0 1 0 1 0 ... 0 0 0 0 0 0

Q. Fill in the missing bits for the second address. Suppose we increased the page size to 128 kB, would it 
be possible for synonyms to have different L1 indices? Why or why not?



II. Below is shown a 5-stage pipeline architecture (Fetch, Decode, 
Execute, Memory, and Write-back). Stage registers are the narrow 
vertical rectangles. At right are instruction formats (high-order bit at 
the left). Control signals are decoded and then passed through a 
MUX and written to a pipeline stage register. The control signal 
destinations are shown as select inputs to datapath MUXs, write-
enable signals, and ALU operation control. Branches are taken when 
the ALU result is 0 (ALU.Zero == 1).

Instruction Decoder.
A ROM containing an 8-element word for each opcode. 
For simplicity, assume 2-bit opcodes: BR==11, LW=10, 
SW=01, ALU operations=00.

ExtOp:                  (use the opcode for this field)
ALUsrc select:       0 = ReadData2, 1 = immediate
ALUOp select:       3 = Subtract,     4 = Add
RegDst select:        0 = RT,             1 = RD
MemWr:                0 = Read,          1 = Write
Branch:                  instruction is a branch
MemtoReg select:  0 = ReadData,   1 = ALUresult
RegWr:                  0 = No write,     1 = Write

Instr.
Mem.



Q. Fill in the missing control signal values in the instruction decoder ROM. A branch is taken if two register 
values are equal. Branch is an I-format instruction. LW uses RT as its destination register field.

Q. Consider an instruction mix of 25% ALU, 30% loads, 20% stores, and 25% branch instructions. What 
would the average CPI be for this CPU? Assume load-use and branch-delay slots cannot be filled by the 
compiler; all loads incur a load-use bubble; all branches are taken. There is a two-level cache, and misses 
stall the pipeline. Instruction fetch and data accesses have an L1 miss rate of 5% and an L2 miss rate of 1%. 
An L1 miss incurs a 10 cycle L2 delay. An L2 miss incurs an extra 100 cycle delay.

Q. In a crude form, this machine does branch prediction. Does it predict taken or not-taken? What is the mis-
prediction penalty?

Q. Suppose a data access (load or store) causes a page fault exception. How many NOPs are injected 
into the pipeline? Note that the mechanism for jumping to an execption handler is not shown.



II (continued). We have the following loop:

  LOOP:                               ;---- Repeat
      LW   $1, 0( $2 )             ;----    $1     <== *PTR
      ADD $1, $1, $3             ;----    $1     <== $1 + $3
      SW   $1, 0( $2 )             ;----   *PTR <== $1
      ADD  $2, $2, 4              ;----    PTR  <== PTR++
      SUB  $4, $4, 1               ;----     CNT--   
      BRn  $4, $0, LOOP      ;---- Until( CNT == 0 )

BRn branches if ($4 - $0) is not zero, and $0 always contains 0. So, the branch runs until $4 reaches 0. 

Q. Identify all dependencies (RAW, WAR, etc.) and which registers cause them in the above code. Which 
ones represent pipeline control or data hazards, and how many pipeline bubbles are caused by these 
hazards?

Q. Reschedule the loop to reduce the number of bubbles as much as possible. You may alter individual 
instructsions (adjusting offsets). How many bubbles result?

Q. Assuming all instruction fetches and data accesses hit in L1, what is the speedup of the rescheduled 
loop w.r.t. the original loop?

Q. Given the previous question's assumptions, what fraction of the total program's execution would the 
loop have to represent to attain an overall speedup of 1.25 from this rescheduling?



III. Joe is working on the OS for the LC3, and has written a device driver for the keyboard. He has also written a service 
routine that user programs can call to get keyboard input data. The service routine is envoked with "TRAP x10". The 
interrupt vector for the keyboard is x0180. The service routine is called by a library function "get()" that is assembled 
separately and linked with the user's C code. Joe's code is shown below (mostly just the comments): The runtime memory 
map is shown at right. Traps act like exceptions and run in kernel mode. OS space is protected.

KB_INIT
    ;--- write VT for KB_SERVICE
    ;--- write VT for KB_HANDLER
    ;--- enable keyboard interrupts
          RET
KB_HANDLER
    ;--- get keyboard data
    ;--- insert in buffer
    ;--- set Ready flag variable
          TRAP x12
    ;--- enable keyboard interrupts
          RTI
KB_SERVICE
    ;--- while (1) 
    ;---    check Ready flag
    ;---    if Ready
    ;---        get data from buffer
    ;---        put data in R0 as return value
                RTI
    ;---    else
                TRAP x11
    ;--- end-while

*TRAP x11 jumps to a scheduler that starts another 
program running. TRAP x12 checks whether some 
program is waiting for keyboard data, and if so, schedules 
it to be reloaded and run as if it was returning from its 
TRAP x11 call.

Q. The C call to get() in user's main() returns a character value into the variable "a". The code 
generated for this by the compiler uses the C function-call stack protocol. From which stack, kernel 
or user, would this code get its return value? Where in the above map is the code that puts the 
return value onto the stack?

Q. The call to sleep, "TRAP x11", in KB_SERVICE, switches contexts to another program, including 
swapping the entire user memory content. When the sleeping program is awakened, its context has been 
restored and it is exiting the sleep() trap via RTI. Before sleep() returns, what task must it complete so 
that RTI and the TRAP x10 call both return corrrectly? Explain.


