COSC-520, final exam
2012, spring

NAME:

Open book, open notes (laptops are ok). Partial credit is important; so, explain what you are doing in each question.
Do not answer any question with only a number or similar unexplained answer. That will get you very little credit.
Show your work, use the back of the pages as needed, but indicate which problem.

I. The maximum physically-addressable memory of machine M is 1024-GB (1-TB). M has 64-bit words, 64-bit virtual
addresses, and memory is byte-addressable. Pages are 16 kB.

Q.1. How many bits wide is a TLB entry for M? Only the minimum number of bits needed to do address
translation should be included. Also include 4 bytes of other page table information (such as PID,
permissions, and so forth). Because TLB entries are read from memory, round up to an integer number of
words.

Wode am. 8B, 50 we nead 3 s o bife ot 8K Puge iv 1L AB n 278 4
Ld?mlé‘bl‘l’xwvlwm)w o pagn s Il bitr, The, & prgp
/ﬁ 11 1 b P&(A gy 1y =50 A,u{}

Pé& o 5-—& V\l)& B’%(/)4 . "mw\naha 0’1102308/ " L/O M‘I“’“J ‘JW

PH ¥
ks, ol & ot nammbon T2 o Ho-1 = 34 Uik, A TAB dons Ase (507X)

=74 ks ?m aldrecs ﬁm:ﬂaﬂﬂéhj M[a& n 10R lf’fm MMI\AA? va A«?;v 8 (10-1-1/)8/
\N‘Ynic&\ M-wy)e} \h W/w‘c- NMAS' (gB/woréy . 168 (0 2 um S)

I (continued). M's L1 cache is virtually indexed, virtually tagged, 4-way set-associative, with 4-word blocks. Its total
data size is 512 kB. L2 has 32 MB of data, is 8-way associative, physically indexed and tagged, with 8-word blocks.

Q.2. How many bits wide are L1 and L2 cache entries? Both have 1 valid, 1 dirty, 2 LRU, and 16 PID bits.

) 19 l
11 hes 400 ods = 2 biks £ W 2°2°8B 4 Jok. o A/w&faa -—>2/q=;l7/3/ww47\
y7 K Z 3
B =
VIR | Ty idey | WE | (32 /il &) e has { 2% o fres
| war, ie. 1] ‘;‘\)W bite o 64- (2e203) = 47 Liks
%m Vl/l]lluf-&}/y’ Cuzo\e. t;tw\ “w ("|'7L Y 2004 4 323] (C7L+2.Y“o)=32'ib P—Mowf'r?.
¢ 1L 3 3 Fo L, we Aae (.25:220 B/&Jw (%3 B/waa,
MAR | Tag imdex W¥ (@ Blodhs crs. 8««)1/1):(@3 LY B of dkn pan fluch |
’;‘W‘Hef = 2 R(“&”" = ﬂ (/n‘l'rms 1LY "“)“ la) o 40‘(11*3*3) =¥ L’J’f. Telel v

Yy 8)
(IY+20+512M, = (550 por M&r%).

I (continued). Register $3 = 0x00000000004 1FFB8 just before the following instructions are executed:

LW $11,0x0($3)
SUBi $3, $3, 0x100000
LW $12, 0x0($3)
SUBI $3, $3, 0x100000
LW $13,0x0($3)
SUBI $3, $3, 0x100000
LW $14, 0x0($3)
SUBI $3, $3, 0x100000
LF16 $F2, 0x0($3)

LF16 loads 16B from the memory location specified by 0x0($3) into the double-precision floating-point register, $F2.
SUBI subtracts the immediate value from $3.

Q.3. What is the address of the low-order 64-bit word accessed by the LF16 instruction (show in hex)?

The ity address i $3 i 0x0-- 04 1FF BB and fowr anhtractins o)
([~ 0x0.--0100000)x4

\F,D)s ‘\‘Q\x .Qou-on)u woréls qddvess: Oy O... 0() 1 F FB$

; 3 b\‘l’ ()B"CSJ =0.
Q.4. What is the high-order 8B-word's address? Word bo““’éw‘m’ b, Jo yé é
Wa add 1000 (binery) % the addcess, o 8 & o¥
0x0..-01FFCO

Q.5. What is the low-order word's L1 cache index? What is its L1 tag? Show in binary and hex. Use
"0...0" for repeated hex or binary zeroes.

47 9 Z 3 s kit ider, (oY), 6 98 weds.
Ta’g' WJO" L The Low-orden 641 wad i d‘ &‘(‘CSS

0..0 0 1 F F B 3% (e

G ... Q0000 oasl W o gwd Chynary)

W — ‘A %&Ba ‘ v—\1
ool InoUy

Jow-order word bes indey =) U ol o OcFED . (TS fa; o 0.0 m hy a anoua‘

VMAR

Q.6. What is the high-order word's L1 cache index? What is its L1 tag?

., 0 .. 0 1 F £C 0 @ (h
RIoress - Q .. 9 Qo) I uog{\goge Comary)
. N
TRy Undor w3 B

oy W WL NG Wineny) 1§ F B gy Tay W oo 0.

Q.7. Suppose some block in L1 with index XFFE and tag 0 is valid. Does the LF16 instruction's data
access hit or miss in L17?

The Sequem e, ab)KSSQS a,cée.lﬁé e N o M
v o041 fF BE ‘f(%&‘y*L/wtht"?.‘;
xXOO.l.-.O'}.’I?aC BS So eadh address Shan fu%@w&f ﬁﬁu
x0... 02| ¢f BE TMJ\M%MQ“MM&VAW@

o | FF BS |
:g...oo\?FN < FED. Becsne, L’l(),’%-w%t/%%m}

Wmmau. A Y w% 14 4*13\3(Inders . gojﬂ)u 5T uccu.mm‘“fﬁ(
QY adress access=d o XQ...0TF FCO w/ imdox xFFE. L7Aa‘s¢ﬂ Uit access.

Q.8. What is the page number for the LF16 instruction's data access?

o A1 2 The Lew 1Y bl we posp n’Hsoi{L So/ Jm Wpfer
P N |pr| 5O MW%M?&’TQMM[IMQ?
host quasns 5o, the ik 47 bits the poe wrbin e gte T Fomaning bifs

bre x\FFRY . w0001 N NL o) oo, {. MWO“ e P“}*% 5
Pk}&s& ‘)a\?q, ‘XW

Q.. 0111 (50 vk, i hox x0...07 (13 d5%)

I (continued). The page table has this entry at index x0...07:

[F# =x1234567 (26 bits) , valid = 1, PID = 2367, dirty = 1, LRU =3, RWX =100]

Q.9. What two L2 indices does the LF16 instruction's data access have? Give binary and hex. What is the
L2 tag?

for The Lo word : | |
The physical dcess iy 123N 517 comead o) the oo M bite f b irhe]

wYdcess (FFBB): 01 2010 doll 3o 010\ W\\\/\“&é
WR
8\.90\’(1 bl(’dg "5‘3“]911. \IB%/ Uo\‘o.l*— W\)f/x: = 0\10 0\” l\” \HQ n AW,;E L;v- W\

(;mt?,\o. &/\\79\ wod: Low 14 b ane (FFCO)

\\—/——/ \/

W%
Tedon o LTFF. Tag = xlz345

Q. If L1 misses for both words for the LF16 instruction, and the tag x12345 is not in a valid L2 cache line,
how many words of memory must be read from main memory (there is no L3)? How many words of data
must be communicated in total (both memory-to-cache and L2-to-L1 reads)? Ignore writing dirty blocks for

evicted cache lines and communicating addresses. M\) (o*
%emmnf&u. ozt W WD O L bt“}'\ \OMAQNJJ °\'\ MM} we

WM L 12 blocks meua, 9 ?wvf)& We alss rod G serd L
M blecks hion LA @ ¥ ypls. T i 21 wads

I (conitinued). Shown below are two virtual memory address registers (VMAR). They are the same register with two
separate sets of wires tapping its outputs in parallel: one goes directly to L1, the other to the TLB for address translation
and then on to L2. The TLB shows that pages 0 and XxF map to physical frame 5. L1 shows a valid block with virtual tag
0, and a valid block with virtual tag 1. (Their positions do not indicate their L1 indices.) This is the synonym problem:
two virtual addresses refer to the same physical address whose block appears twice in L1. Below is shown an address
whose virtual tag is O that maps to the same physical word as another address whose tag is 1.

. : Way Way Wey Wagg L1
VMAR Tag | oindex w1 B¥ Tag Dde ;AbTa D Tay Dde
| | | _L!_T&.}__JI ’\
e I o' [!
Tag — n .:
! | L 11,
VMAR Paggﬂ?& :I Olcfsd \
TLB y = T
Pagesk FrameX =

5

0 2 <,_311 e, 10 ¢ 01 e o0

x F

000?

MAR | FrameX offet

L— To L2
adress-1 &Jdress -2
b b
l— u7b Tay —-»1«'\;2&% —>| WX | i | J— 7L Tay ~—~>1e-/‘\wlnzbcx —>| WK | p¥ |
lo .. 00000 |[0..000000] lo .. 01111 |[0..000000]
50b Page ¥ mb o $set 50b Page ¥ mb o Hset
lo .. 00101][o..000000] lo .. 00101][o..000000]
26b Feame® b o Hset 26b Foame¥ b o Hset

Q. Fill in the missing bits for the second address. Suppose we increased the page size to 128 kB, would it
be possible for synonyms to have different L1 indices? Why or why not?

Rsth resser o R ~o- e b pame P85 (0. a0101) . Al -1 b g0 =5,
Mreses o gt > 0 the m\lg gy showm i fum poge xf (0. a111); 0 3 ma 5o
o \miSSl‘Na brs. 10.€AD pese =P 107 10" B/P"}'“ = 17-bit pése %‘J Bectuns. thoe
Tt-f-v;-mﬁ;/ Papy (v H7-bt) al supangms Mhane dondidd hno 17-biky amd
Fimoiss 1 aﬁwuéa. k. %/ 5y nonyns wd 4,&1174 Aue Aame. indaly,

biTs: 3 ... 25... 20 15 «oa 10+ K-
I1. Below is shown a 5-stage pipeline architecture (Fetch, Decode, 6 5 5 5 5 6
Execute, Memory, and Write-back). Stage registers are the narrow Rformat | 0P=0 | rs | i | vd | sa | dunct |
vertical rectangles. At right are instruction formats (high-order bit at gt feeond Relt - SHiR - Hundion
the left). Control signals are decoded and then passed through a Register Register
MUX and written to a pipeline stage register. The control signal 6 5 5 16
destinations are shown as select inputs to datapath MUXs, write- I-format oo [s | | o
enable signals, and ALU operation control. Branches are taken when ot fecond frmediate
the ALU result is 0 (ALU.Zero == 1). Register Register
6 2
J-format | op | target
Instruction Decoder. Jump Target Address
A ROM containing an 8-element word for each opcode. -\. .
For simplicity, assume 2-bit opcodes: BR==11, LW=10, I“s.\.r\’c von De COAQ Rb M
SW=01, ALU operations=00. " 10 o1 00 S ExtOp
| ALUSrc
ExtOp: (use the opcode for this field) __0~_ I I SV ALTO
ALUsrec select: 0 = ReadData2, 1 = immediate 3 Y L X e
ALUOPp select: 3 = Subtract, 4= Add X 0 X 1 Reglst
RegDst select: ~ 0=RT, 1=RD 0 0 1 0 MemWr
MemWr: 0= Read, 1 = Write 1 0 O O g Branch
Branch: instruction is a branch opca Be,
MemtoReg select: 0 = ReadData, 1= ALUresult X 1 X 0 |—s MWOBE—-
RegWr: 0 =No write, 1= Write L Q A 0 1 o ReaWi
ADDRESS: J! e o1 09 '
BR Lw sw ALl
FETCH DECODE F—Xecw\'c MEMORY WRITE
mor) NN
: _ _
M [N P
: 5
1 PCOY +
J OPCIDE g _g A
54
T IFID _J
Add —| r-\‘\\
1 am A
[NoP] =) [® o
' 5 RS | Fead [
| PO AT2ES # fegEiert Read \
EIRT | cam datat
g
0 regmﬁ?ammm o AL
" Reanl o) ALLE Read '
Instr. . %ﬂsf:er daa 2 - regUt | . Agiiress e B (TP) N :.1
Mem (@ | wirte @ X ‘ E ’ memory @ ur
. i wite -|"\E'J
instruction ¢ ,/_ \ = :
" y [Sign 3
A 'Ir:ntb\ar'u:lII &
e \ ;
)
!T?_"‘."“}"lm RD EJ
L -\ L L

Q. Fill in the missing control signal values in the instruction decoder ROM. A branch is taken if two register
values are equal. Branch is an I-format instruction. LW uses RT as its destination register field.

ALvge cotirls MUX ® Lower ALW o\‘d. LW/sW nz ‘ommediks, valus foom it 1. ALU £d BR wse
T regishr w&wz,sd‘ %, we i’“?‘;" 0. ResDst m&‘ro\s M}JX o @ 0 {«n RTMJ s Aestooctiom ano 4 S
o) selats 5 e timihion. Only R a) AL%L s o v write, 0 e e X 1 0 fo W () 1 fo AL CRD).

Q. In a crude form, this machine does branch prediction. Does it predict taken or not-taken? What is the mis-
prediction penalty? R Dovg o~ ~din dedow « BR thuy o ek red-

¢ /&"} G g R, » ﬁ P it whYabem.
W tdhen, tingd addeess i medt fa PCvhn BR G i Exende @), b () 4 ©
NS Mh%?\"ww\l\dﬂ/\ prﬁ);’jﬂ) k'“§+(VCl"3“5 = 2 WNob, Ix'nsev"'a) oty @, @.

Q. Suppose a data access (load or store) causes a page fault exception. How many NOPs are injected
into the pipeline? Note that the mechanism for jumping to an execption handler is not shown.

The bvess 4 the oxeaglion fndlon b medy b e widlen K the PC whan Lwkw o Gy MEM.

T ry chisng afn thet st Ae mﬂ«éu) * hoe o pracon exesplion - 0,0, ® red Nop,
w(s‘\'}‘w“hﬂemxt 3 ‘D“LHQS'. g

Q. Consider an instruction mix of 25% ALU, 30% loads, 20% stores, and 25% branch instructions. What
would the average CPI be for this CPU? Assume load-use and branch-delay slots cannot be filled by the
compiler; all loads incur a load-use bubble; all branches are taken. There is a two-level cache, and misses
stall the pipeline. Instruction fetch and data accesses have an L1 miss rate of 5% and an L2 miss rate of 1%.
An L1 miss incurs a 10 cycle L2 delay. An L2 miss incurs an extra 100 cycle delay.

Foo N ;m,}wj-w‘“ lotches. | we nead 1 %Jz A deeers prm L1, Meﬂwwcﬁmm[{(
we mis LT, we naad (0 eyeles b acccps LA whothn we KA A man L T
hapgons '149 N(SZ) M wn L1, o (17) ‘6 LY accoppen. (which ane) L1 mtc}a,\/ W
Maigs U L) awd 1’“" andher 130 u‘des.'ﬁdb k&wm //n N(S'ZJ[/Z) % &fffu n ;Jf)%w

Vo ol = N(14 (5010 + (s0)(17) 100) . Thaw wne A((38),, +(20)) H

L eDIes w/ the Some cicle Pofrwmence Jale access .»,\1&« = (0'5')/"(/‘*&7})[0 + (S‘Z)/[Z)wa\‘

BRs capms A haMoles w)n)/%ﬁﬂwe\ BR w’d:;g A NOP: akse oot . ’ff\ma«x,

N('/q) R infrichns : PR ‘*S"Q"’“ = Nl%f)(‘+23~ Ll R~
Thew. & wo mendion \mkbe 4 J,mwb\ld\a' LW cow mj&v('s s sz vl , /ﬂ ’)
) whon Lo i Wekcbadk). Becase Ryl & 7= B30, i indpuchi by
M o LW can ke in Dewd, bt @) b @) msk be NOPs. Theo s nioof) 1

LW eids w/ 2 Nobs > L\ oyl = M[207)(147)

0. thon tnttridbans exik wh bukles ¢ (SW, ALU) eydes = N(20 2,00 +n(27) 1)
ToToS\ C\\&Up O s @6 /JQM é_‘(?l'msi

Coy = NQBO+ BT fio + (T)100)) + N (K)0) + NEZ)G) + A

CPT = C.(n) Vi _ 3% ISF 12400 2374 0,4
T = = BRI gy 2le) e SN e

II (continued). We have the following loop: " ({W &
J
LOOP: ;--— Repeat

® Lw $1,0(%2) ——— $1 <==*PTR b

& ADDSISI,$3 e $1 <==$1+$3 d

@) SW $1,0($2) . *PTR <==$1 @

@ ADD $2,$2,4 ;--——- PTR <==PTR++ RAW B2 RALD

SUB $4, $4, 1 ;-—— CNT-- WAR }@
@ BRn $4,$0,LOOP ;- Until(CNT ==0) -« MX_,. L'I‘Lr Am\

Lw
lﬁl)n branches if ($4 - $0) is not zero, and $0 always contains 0. So, the branch runs until $4 reaches 0.

Q. Identify all dependencies (RAW, WAR, etc.) and which registers cause them in the above code. Which

ones represent pipeline control or data hazards, and how many pipeline bubbles are caused by these
hazards?

b a Losd-wne ﬂ\&bub) Wo jﬁw&;}a‘; Y ceides 2 buddle, . b-c i a
date. RAW hapd o also rc.%m"cs 2 bubbles. e-f o 4 BR dita ,KL}MA/ dse 2 bdf{r(a._.
ToVol . b bMes.

Q. Reschedule the loop to reduce the number of bubbles as much as possible. You may alter individual
instructsions (adjusting offsets). How many bubbles result?

o) 2\
We cam wae LW the nest UtoBion. Mo the LW -ADD hay o
b WQunimdid . Wien S@“ (e meves tha SUB-BR kx)m’éj wd ADD B — sw ¥1 A&}qr)) w«fq& h“

"’3‘““””““'“3 wstrzhiens | F1 i it W«J J,—j LW 1. ADD ¥2 Ahfm)qw‘o\ hemds ane also gome .
BR 4#Y Ao 42,8208 gy w4, 0(42) Lw $1,49(42) sue 59,841 AvpslL k3

p/ke/u‘nc _

LooP: A
Lowp needs preavble a—)aa\w\mye\: Resulh ede . LW 1 0(32) o0 §1

NP SuB
np nep 1w B, 0(32) NO P ‘;“V’Vi?z‘*(*l)
_—
ADD 2
RR §Y

Q. Assuming all instruction fetches and data accesses hit in L1, what is the speedup of the rescheduled
loop w.r.t. the original loop?

LU T (T Ry ST
Thew O by eple) Yeg) ’

Q. Given the previous question's assumptions, what fraction of the total program's execution would the
loop have to represent to attain an overall speedup of 1.25 from this rescheduling?

/d\’-; , - $7§L x> ([-f')-lf?[/?_ = %’
(t~§)+°c/y_ 1-4+$ =
f = %-2 =Y = HO7, 1 ,m;aéo;\

w,&,ybazh&

III. Joe is working on the OS for the LC3, and has written a device driver for the keyboard. He has also written a service
routine that user programs can call to get keyboard input data. The service routine is envoked with "TRAP x10". The
interrupt vector for the keyboard is x0180. The service routine is called by a library function "get()" that is assembled
separately and linked with the user's C code. Joe's code is shown below (mostly just the comments): The runtime memory
map is shown at right. Traps act like exceptions and run in kernel mode. OS space is protected.

KB_INIT

- write VT for KB_ SERVICE \MCW\' . o

;--- write VT for KB_HANDLER e

%nél_?le keyboard interrupts x0010
KB_HANDLER SN NT

;--- get keyboard data x0180

;--- insert in buffer se

;--- set Ready flag variable 0260 Y

TRAP x12
;--—- enable keyboard interrupts ~ KBAanbied 0 S
RTI 7] weservues

KB_SERVICE cee

;--—- while (1)

T heady S orn] stk

get data from buffer #3000 maiv: ... o U S

put data in RO as return value 4 = gere) E K

RTI P S
- else get: oo
TRAP x11 N T&M.’ .x1o < Liked

;--- end-while S’vjf / s)Jz, Librar\1
*TRAP x11 jumps to a scheduler that starts another Q.Q)L \/“'Q © A(‘
program running. TRAP x12 checks whether some
program is waiting for keyboard data, and if so, schedules user stack,
it to be reloaded and run as if it was returning from its
TRAP x11 call. I/o

Q. The C call to get() in user's main() returns a character value into the variable "a". The code
gehetated for this by the compiler uses the C function-call stack protocol. From which stack, kernel
or user, would this code get its return value? Where in the above map is the code that puts the
return value onto the stack?

The C oM a uwor)\(jﬂ_a} MJ_WV‘&QA&W\'A/M 9(}()% C‘,m(/fwmc on
want ok G ocde mut pek up stock in e, just offen

TPAP X190 cdX .

Q. The call to sleep, "TRAP x11", in KB_SERVICE, switches contexts to another program, including
swapping the entire user memory content. When the sleeping program is awakened, its context has been
restored and it is exiting the sleep() trap via RTI. Before sleep() returns, what task must it complete so
that RTI and the TRAP x10 call both return corrrectly? Explain.

The Reowd stocde st bae 7he P PSR vluar thot wene poslhed oif fthe stk
oy the TRAC A cutl Ao ok stk wads b Ao nitie) so tht TRIF xto Lop?
uld PGSR a2 Adow, and he nfum B owatn code il wak .

