
072-lec-08 Syntax corner.-------------------
(see implicit.c)

 float x;
 x = 1; ==> x = (float) 1;

 foo f;
 f = 1; ==> f = foo(1) !?!;

If it's a bad idea to allow that, do
this:

class foo {
 explicit foo(int x);
};

Graphics : GraphicsBaseGraphics : GraphicsBase

Holy Commandments:

How should we override GraphicsBase class? Static or Virtual overrides?

Pointer's type determines method
called. Always the same method
called.

Multiple graphics objects of different
types? Both accessed in same program at
runtime? Via pointer? Is this what we
need?

class B now has a function pointer
field:

 (*foo())

Pointer filled in at instance creation.
Points to F.foo or G.foo.

The question is,

Where does the public stuff go?
Where does the protected stuff go?

Private stuff becomes hidden in all cases.

Symbol Table
name address
==== =====
p 1234
c 1238
ch 5678
n 5682

Symbol Table
==========
A 2340
x 2356

"A" is treated AS IF it were a pointer
variable whose content was 2340. So,
to be consistent, we could ASSUME it
is:

Bottom line:

Array names are not pointer variables,
but they are sort of, syntactically.

&(A[0])==2280736

&(A[1])==2280740

&(A[2])==2280744

&(A[3])==2280748

(A+0)==2280736

(A+1)==2280740

(A+2)==2280744

(A+3)==2280748

p = A

p==2280736
&p==2280732

A==2280736

&A==2280736

(p+0)==2280736

(p+1)==2280740

(p+2)==2280744

(p+3)==2280748

*p==1

*A==1

*(p+1)==2

*(A+1)==2

B==2280688

&(B[0][0])==2280688

B[0]==2280688

B[1]==2280696

B[2]==2280704

B[3]==2280712

&(B[0])==2280688

&(B[1])==2280696
&(B[2])==2280704

&(B[3])==2280712

&(B[1][0])==2280696

&(B[2][0])==2280704

&(B[3][0])==2280712

#include <iostream>

using namespace std;

int main()
{

 int A[4] = {1,2,3,4};

 int *p;

 int B[4][2] = {{1,2}, {3,4}, {5,6}, {7,8}};

 cout << "&(A[0])==" << (long) &(A[0]) << endl;

 cout << "&(A[1])==" << (long) &(A[1]) << endl;

 cout << "&(A[2])==" << (long) &(A[2]) << endl;
 cout << "&(A[3])==" << (long) &(A[3]) << endl;

 cout << endl;

 cout << "(A+0)==" << (long) (A+0) << endl;

 cout << "(A+1)==" << (long) (A+1) << endl;

 cout << "(A+2)==" << (long) (A+2) << endl;

 cout << "(A+3)==" << (long) (A+3) << endl;
 cout << endl;

 p = A;

 cout << "p = A" << endl;

 cout << "p==" << (long) p << endl;

