Pre-Processing

(COSC 488)

Fall 2013

Nazli Goharian
nazli@cs.georgetown.edu

Document Processing

Facts:
» Documents may belong to various languages.
Web: ~ 60% in English

« A given document may have foreign language terms
and phrases.

» Skewed term frequency distribution

Qutline

— Tokenizing single terms
— Stop terms

— Special terms

— Normalization of tokens
— Phrasing

— Stemming

— n-grams

— links

Parsing Single Terms

« Splitting on white spaces
— “parsing single terms”
“Parsing”, “single”, “terms”
Problem:
— “whitespaces” or “white spaces”
— month day, year “Aug 28, 2008”
— “Washington DC”
» Each language has somewhat its own conventions as to word
boundaries.
— Some languages use a compound splitter or segmentation software.

4

Stop Words

« Terms that occur too many times in a collection and
hence are not discriminating:
— to, a, the, of, from,.....
— Evaluate the stop terms for a domain
— Stop word lists are maintained
* Reduces the index size

* Problem: some search are not successful: “to be or not to be”
« Itisa lossy compression.
— General trend in IR has been to reduce the size of stop
word list or eliminate the use of it.
« Using a good index compression
» Weighting stop terms accordingly for query processing (query-

based)

Special Tokens

« Dates

» Digit-alphabet

» Alphabet-digit

» Hyphenation

» All caps

» Cap period (initial)
» Digit.digit

» Digit,digit

» Currency symbol

» Cultural known names
» Email address

* URLs

» IP address

* Names

2005; Oct 10, 2005; 10/10/2005; 10/10/05
1-hour

F-16; 1-20

co-existence; black-tie party

CNN, BBC

N.

8.00

8,000

$, ...

M*A*S*H

mouse@hotmail.com

http://www.cnn.com

123.67.65.870

New York; Los Angles (Los Angles-New York flights 2?7??)

6

Normalization of Tokens

 Using equivalence class of terms. Example rules:
— Ph.D > Phd
- US.A > USA
— 10/10/2005 - Oct 10, 2005
— F-16 > F16
— Variations of Umlaut words in German

» What about these rules?
— Windows > window (what if one is OS and one is a window???)
- C.AD. > cad (different meaning????)

Normalization of Tokens (cont’d)

Case folding - reduces term index by ~17%, but a lossy compression
— Convert all to lower case (most practical); or some to lower case

Spelling variations (neighbor vs. neighbour; a foreign name)

Accents on letters (naive vs. naive; many foreign language terms)
Variant transliteration (Den-Haag vs. The Hague)

— Use Soundex algorithm!

More on normalization under Stemming....

Phrase processing

 Phrase recognition is based on the goal of indexing
meaningful phrases like
— “Lincoln Town Car”
— “San Francisco”
— “apple pie”
« Doing this would use word order to assist with

effectiveness -- otherwise we are assuming the
query and documents are just a “bag of words”

« ~10% of web queries are explicit phrase queries

Phrase processing

» Add phrase terms to the query just like

other terms

* This really violates independence assumptions but a
lot of people do it anyway

 Give phrase terms a different weight than
query terms

10

Constructing Phrases
using n-gram words

Using bigrams, trigrams

Start with all 2-word pairs that are not
separated by punctuation, stop words, or
special characters

Only store those that occur more than x

times
— Example: New York; Apple Pie;...

11

Constructing Phrases
using term positions

Store the term positions

Identify phrases at the query processing
time

Good flexibility for various window sizes
May be too slow for large collections

12

Constructing Phrases
using Part-of-Speech Tagging
Can take advantage of NLP techniques:
 Using part-of-Speech tagging to identify
key components of a sentence (S-V-OBJ, ...)
— store all noun phrases “Republic of China”, or
— store adjective followed by noun “Red Carpet”

* Problem: too slow!

13

Constructing Phrases
Using Named Entity Tagging

« Finding structured data within an unstructured
document

— People’s names, organizations, locations, amounts, etc.

14

Phrase Processing Summary

» Pro
— Often found to improve effectiveness by 10%

 Con

— Dramatically increases size of term dictionary and
the size of the index

15

Parser Generators

» Goal is to allow users to specify parsing
rules as grammars.

» Grammars provide a very flexible means of
expressing all valid strings in a language.

16

Some useful regular expressions

Acronym: (["A"-"Z"]) (["A"-"Z"])* Ex: NCR, IBM, etc.
Abbreviation: (["A"-"Z"]".")* Ex: US.A.

Model: ["a"-"z" "A"-"Z"] "-" (["0"-"9"])* Ex: F-16, C-25
Word: ["a"-"z" "A"-"Z"] (["a"-"z","A"-"Z"])* Ex: hippo, Hippo
Integer: ["0"-"9"] (["0"-"9"])* Ex: 123

Decimal: (["0"-"9"])*"." (["0"-"9"])+ Ex: 123.45

17

Stemming

 Goal of stemming (Conflation) is to reduce
variations of each word due to inflection or
derivation to a common stem.

Improves effectiveness by providing a better
match between query and a relevant document.

User who is searching for “swimming” might be
interested in documents with “swim”.

Reduces the term index by ~17%
It is a lossy compression.

18

Stemming

e @ indexing time
— Storing only the stems

* Reduces the flexibility for certain context, improves
for some other

* Reduces index size
— Storing both stems and non-stemmed terms
* @ Query processing time

* Increases the flexibility of not stemming the Q terms
» Must expand the Q to all term variations (slow)

19

Stemming Algorithms

« Stemming algorithms generate stem classes.

— Rule-Based
* Porter (1980)
 Lovins (1968)

— Dictionary-based
o K-stem (1989, 1993)

— Corpus/Co-Occurrence-Based (1994)

20

10

Porter Stemmer

« An incoming word is cleaned up in the
initialization phase, one prefix trimming
phase then takes place and then five suffix
trimming phases occur.

» Note: The entire algorithm will not be
covered -- we will leave out some obscure
rules.

21

Initialization
« First the word is cleaned up. Converted to

lower case only letters or digits are kept.
» F-16 is converted to f16.

22

11

Porter Stemming

» Remove prefixes:
"kilo", "micro", "milli", "intra", "ultra",
"mega", "nano", "pico", "pseudo”

So megabyte, kilobyte all become “byte”.

23

Porter Step 1

Replace “ing” with “e”, if number of consonant-vowels switches,
called measure, is grater then 3.
— liberating --> liberate, facilating--> facilate
Remove “es” from words that end in “sses” or “ies”
— passes --> pass, cries --> cfri
Remove “s” from words whose next to last letter is not an “‘s”
— runs --> run, fuss --> fuss
If word has a vowel and ends with “eed” remove the “ed”
— agreed --> agre, freed --> freed
Remove “ed” and “ing” from words that have other vowel
— dreaded --> dread, red --> red, bothering --> bother, bring --> bring
Remove “d” if word has a vowel and ends with “ated” or “bled”
— enabled --> enable, generated --> generate

(1))

Replace trailing “y” with an “I” if word has a vowel

— satisfy --> satisfi, fly --> fly
24

12

Porter Step 2

« With what is left, replace any suffix on the left with suffix
on the right- only if the consonant-vowels measure >0

tional tion conditional --> condition
ization ize nationalization --> nationalize
iveness ive effectiveness --> effective
fulness ful usefulness --> useful

ousness OUS Nervousness --> Nervous

ousli ous nervously --> nervous

entli ent fervently --> fervent

iveness ive inventiveness --> inventive
biliti ble sensibility --> sensible

25

Step 3

» With what is left, replace any suffix on the left with suffix on
the right

icate ic fabricate --> fabric (Think about this one)

ative -- combativ --> comb (another good one)
alize al nationalize --> national

iciti ic

ical ic tropical --> tropic

ful - faithful --> faith

iveness ive inventiveness --> inventive

ness -- harness --> har

26

13

Step 4

» Remove remaining standard suffixes

al, ance, ence, er, ic, able, ible, ant, ement,
ment, ent, sion, tion, ou, ism, ate, iti, ous, ive,
ize, i1se

27

Step 5

* Remove trailing “e” if word does not end in
a vowel
— hinge --> hing
— free --> free

28

14

Porter Summary

e Con

— many words with different meanings have
common stems (e.g.; fabricate and fabric)

— a lot of stems are not words

29

Dictionary based approaches
(K-Stem)

« Using dictionaries to ensure that the generated stem is
a valid word.
— Develop some candidate words by removing the endings

— Find the longest word that is in the dictionary that matches
one of the candidates.

 Pro: This eliminates the Porter problem that many
stems are not words.
» Con: Language dependent approach

30

15

Corpus-based Co-Occurrence

« Use Porter or other stemmer to stem terms
* Place words in potential classes

« Measure the frequency of co-occurrence of terms
in the class

« Eliminate words from a class with a low co-
occurrence

» Remaining classes form stemming rules

31

Corpus-based Co-Occurrence

* Pro
— Language independent (no need of dictionary)

— Based on assumption that terms in a class will co-occur
with other terms “hippo” will co-occur with “hippos”

— Improves effectiveness
« Con

— Computationally expensive to build co-occurrence
matrix (but you only do it every now and then)

32

16

N-grams

 Noise such as OCR (Optical Character
Recognition) errors or misspelling lower the query
processing accuracy in a term-based search.

» The premise is:

— Substrings of a term may help to find a match in the
noise cases

 Replace terms with n-grams

 Language-independent -- no stemming or stop
word removal needed

33

5-Gram Example

* Q: What technique works on noise and
misspelled words?

« D;: N-grams work on noisy mispelled text.

_work spell « 8 terms are matched

_on_no pelle « No stemming of work, noise
on_noi elled « Partial match of misspelled
n_nois lled_ word

34

17

N-gram Summary

» Pro

— Language independent

— Works on garbled text (OCR, etc.)
« Con

— There can be a LOT of n-grams, dictionary may
not fit in memory anymore (thus, only some are kept)

— Query processing requires more resources

35

Links

» Web documents contain link information
that is parsed and used for query processing
and ranking (ex: pageRank,...).

— Anchor text
— Inlinks and outlinks

36

18

Token Processing Summary

» Token Processing can make a difference in
effectiveness

« Itis often overlooked
 Language independence approach is preferred

37

19

