
1

1

Pre-Processing

(COSC 488)

Fall 2013

Nazli Goharian

nazli@cs.georgetown.edu

2

Document Processing

• Documents may belong to various languages.

 Web: ~ 60% in English

• A given document may have foreign language terms

and phrases.

• Skewed term frequency distribution

Facts:

2

3

Outline

– Tokenizing single terms

– Stop terms

– Special terms

– Normalization of tokens

– Phrasing

– Stemming

– n-grams

– links

4

Parsing Single Terms

• Splitting on white spaces
– “parsing single terms”

“Parsing” , “single”, “terms”

Problem:

– “whitespaces” or “white spaces”

– month day, year “Aug 28, 2008”

– “Washington DC”

• Each language has somewhat its own conventions as to word

boundaries.

– Some languages use a compound splitter or segmentation software.

3

5

Stop Words

• Terms that occur too many times in a collection and
hence are not discriminating:

– to, a, the, of, from,…..

– Evaluate the stop terms for a domain

– Stop word lists are maintained
• Reduces the index size

• Problem: some search are not successful: “to be or not to be”

• It is a lossy compression.

– General trend in IR has been to reduce the size of stop
word list or eliminate the use of it.

• Using a good index compression

• Weighting stop terms accordingly for query processing (query-
based)

6

Special Tokens
• Dates 2005; Oct 10, 2005; 10/10/2005; 10/10/05

• Digit-alphabet 1-hour

• Alphabet-digit F-16; I-20

• Hyphenation co-existence; black-tie party

• All caps CNN, BBC

• Cap period (initial) N.

• Digit.digit 8.00

• Digit,digit 8,000

• Currency symbol $, ….

• Cultural known names M*A*S*H

• Email address mouse@hotmail.com

• URLs http://www.cnn.com

• IP address 123.67.65.870

• Names New York; Los Angles (Los Angles-New York flights ????)

4

7

Normalization of Tokens

• Using equivalence class of terms. Example rules:
– Ph.D  Phd

– U.S.A.  USA

– 10/10/ 2005  Oct 10, 2005

– F-16  F16

– Variations of Umlaut words in German

– …………..

• What about these rules?

– Windows  window (what if one is OS and one is a window???)

– C.A.D.  cad (different meaning????)

8

Normalization of Tokens (cont’d)

• Case folding - reduces term index by ~17%, but a lossy compression

– Convert all to lower case (most practical); or some to lower case

• Spelling variations (neighbor vs. neighbour; a foreign name)

• Accents on letters (naïve vs. naive; many foreign language terms)

• Variant transliteration (Den-Haag vs. The Hague)

– Use Soundex algorithm!

More on normalization under Stemming….

5

9

Phrase processing

• Phrase recognition is based on the goal of indexing

meaningful phrases like

– “Lincoln Town Car”

– “San Francisco”

– “apple pie”

• Doing this would use word order to assist with
effectiveness -- otherwise we are assuming the
query and documents are just a “bag of words”

• ~ 10% of web queries are explicit phrase queries

10

Phrase processing

• Add phrase terms to the query just like

other terms

• This really violates independence assumptions but a

lot of people do it anyway

• Give phrase terms a different weight than

query terms

6

11

Constructing Phrases
using n-gram words

• Using bigrams, trigrams

• Start with all 2-word pairs that are not

separated by punctuation, stop words, or

special characters

• Only store those that occur more than x

times

– Example: New York; Apple Pie;…

12

Constructing Phrases
using term positions

• Store the term positions

• Identify phrases at the query processing

time

• Good flexibility for various window sizes

• May be too slow for large collections

7

13

Constructing Phrases

 using Part-of-Speech Tagging

Can take advantage of NLP techniques:

• Using part-of-Speech tagging to identify

key components of a sentence (S-V-OBJ, …)

– store all noun phrases “Republic of China”, or

– store adjective followed by noun “Red Carpet”

• Problem: too slow!

14

Constructing Phrases
Using Named Entity Tagging

• Finding structured data within an unstructured

document

– People’s names, organizations, locations, amounts, etc.

8

15

Phrase Processing Summary

• Pro

– Often found to improve effectiveness by 10%

• Con

– Dramatically increases size of term dictionary and

the size of the index

16

Parser Generators

• Goal is to allow users to specify parsing

rules as grammars.

• Grammars provide a very flexible means of

expressing all valid strings in a language.

9

17

Some useful regular expressions

Acronym: (["A"-"Z"]) (["A"-"Z"])* Ex: NCR, IBM, etc.

Abbreviation: (["A"-"Z"] ".")* Ex: U.S.A.

Model: ["a"-"z","A"-"Z"] "-" (["0"-"9"])* Ex: F-16, C-25

Word: ["a"-"z","A"-"Z"] (["a"-"z","A"-"Z"])* Ex: hippo, Hippo

Integer: ["0"-"9"] (["0"-"9"])* Ex: 123

Decimal: (["0"-"9"])* "." (["0"-"9"])+ Ex: 123.45

18

Stemming

• Goal of stemming (Conflation) is to reduce
variations of each word due to inflection or
derivation to a common stem.

• Improves effectiveness by providing a better
match between query and a relevant document.

• User who is searching for “swimming” might be
interested in documents with “swim”.

• Reduces the term index by ~17%

• It is a lossy compression.

10

19

Stemming

• @ indexing time

– Storing only the stems

• Reduces the flexibility for certain context, improves
for some other

• Reduces index size

– Storing both stems and non-stemmed terms

• @ Query processing time
• Increases the flexibility of not stemming the Q terms

• Must expand the Q to all term variations (slow)

20

Stemming Algorithms

• Stemming algorithms generate stem classes.

– Rule-Based

• Porter (1980)

• Lovins (1968)

– Dictionary-based

• K-stem (1989, 1993)

– Corpus/Co-Occurrence-Based (1994)

11

21

Porter Stemmer

• An incoming word is cleaned up in the

initialization phase, one prefix trimming

phase then takes place and then five suffix

trimming phases occur.

• Note: The entire algorithm will not be

covered -- we will leave out some obscure

rules.

22

Initialization

• First the word is cleaned up. Converted to

lower case only letters or digits are kept.

• F-16 is converted to f16.

12

23

Porter Stemming

• Remove prefixes:

 "kilo", "micro", "milli", "intra", "ultra",

"mega", "nano", "pico", "pseudo”

So megabyte, kilobyte all become “byte”.

24

Porter Step 1
• Replace “ing” with “e”, if number of consonant-vowels switches,

called measure, is grater then 3.
– liberating --> liberate, facilating--> facilate

• Remove “es” from words that end in “sses” or “ies”
– passes --> pass, cries --> cri

• Remove “s” from words whose next to last letter is not an “s”
– runs --> run, fuss --> fuss

• If word has a vowel and ends with “eed” remove the “ed”
– agreed --> agre, freed --> freed

• Remove “ed” and “ing” from words that have other vowel
– dreaded --> dread, red --> red, bothering --> bother, bring --> bring

• Remove “d” if word has a vowel and ends with “ated” or “bled”
– enabled --> enable, generated --> generate

• Replace trailing “y” with an “I” if word has a vowel
– satisfy --> satisfi, fly --> fly

13

25

Porter Step 2

• With what is left, replace any suffix on the left with suffix
on the right- only if the consonant-vowels measure >0

...

tional tion conditional --> condition

ization ize nationalization --> nationalize

iveness ive effectiveness --> effective

fulness ful usefulness --> useful

ousness ous nervousness --> nervous

ousli ous nervously --> nervous

entli ent fervently --> fervent

iveness ive inventiveness --> inventive

biliti ble sensibility --> sensible

...

26

Step 3

• With what is left, replace any suffix on the left with suffix on
the right

...

icate ic fabricate --> fabric (Think about this one)

ative -- combativ --> comb (another good one)

alize al nationalize --> national

iciti ic

ical ic tropical --> tropic

ful -- faithful --> faith

iveness ive inventiveness --> inventive

ness -- harness --> har

14

27

Step 4

• Remove remaining standard suffixes

al, ance, ence, er, ic, able, ible, ant, ement,

ment, ent, sion, tion, ou, ism, ate, iti, ous, ive,

ize, ise

28

Step 5

• Remove trailing “e” if word does not end in

a vowel

– hinge --> hing

– free --> free

15

29

Porter Summary

• Con

– many words with different meanings have

common stems (e.g.; fabricate and fabric)

– a lot of stems are not words

30

Dictionary based approaches

(K-Stem)

• Using dictionaries to ensure that the generated stem is

a valid word.

– Develop some candidate words by removing the endings

– Find the longest word that is in the dictionary that matches

one of the candidates.

• Pro: This eliminates the Porter problem that many

 stems are not words.

• Con: Language dependent approach

16

31

Corpus-based Co-Occurrence

• Use Porter or other stemmer to stem terms

• Place words in potential classes

• Measure the frequency of co-occurrence of terms

in the class

• Eliminate words from a class with a low co-

occurrence

• Remaining classes form stemming rules

32

Corpus-based Co-Occurrence

• Pro

– Language independent (no need of dictionary)

– Based on assumption that terms in a class will co-occur

with other terms “hippo” will co-occur with “hippos”

– Improves effectiveness

• Con

– Computationally expensive to build co-occurrence

matrix (but you only do it every now and then)

17

33

N-grams

• Noise such as OCR (Optical Character
Recognition) errors or misspelling lower the query
processing accuracy in a term-based search.

• The premise is:

– Substrings of a term may help to find a match in the
noise cases

• Replace terms with n-grams

• Language-independent -- no stemming or stop
word removal needed

34

5-Gram Example

• Q: What technique works on noise and

misspelled words?

• D1: N-grams work on noisy mispelled text.

_work

_on_no

on_noi

n_nois

spell

pelle

elled

lled_

• 8 terms are matched

• No stemming of work, noise

• Partial match of misspelled

 word

18

35

N-gram Summary

• Pro

– Language independent

– Works on garbled text (OCR, etc.)

• Con

– There can be a LOT of n-grams, dictionary may

not fit in memory anymore (thus, only some are kept)

– Query processing requires more resources

36

Links

• Web documents contain link information

that is parsed and used for query processing

and ranking (ex: pageRank,…).

– Anchor text

– Inlinks and outlinks

19

37

Token Processing Summary

• Token Processing can make a difference in

effectiveness

• It is often overlooked

• Language independence approach is preferred

