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Document Processing

Facts:
» Documents may belong to various languages.
Web: ~ 60% in English

« A given document may have foreign language terms
and phrases.

» Skewed term frequency distribution




Qutline

— Tokenizing single terms
— Stop terms

— Special terms

— Normalization of tokens
— Phrasing

— Stemming

— n-grams

— links

Parsing Single Terms

« Splitting on white spaces
— “parsing single terms”
“Parsing”, “single”, “terms”
Problem:
— “whitespaces” or “white spaces”
— month day, year “Aug 28, 2008”
— “Washington DC”
» Each language has somewhat its own conventions as to word
boundaries.
— Some languages use a compound splitter or segmentation software.
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Stop Words

« Terms that occur too many times in a collection and
hence are not discriminating:
— to, a, the, of, from,.....
— Evaluate the stop terms for a domain
— Stop word lists are maintained
* Reduces the index size

* Problem: some search are not successful: “to be or not to be”
« Itisa lossy compression.
— General trend in IR has been to reduce the size of stop
word list or eliminate the use of it.
« Using a good index compression
» Weighting stop terms accordingly for query processing (query-

based)

Special Tokens

« Dates

» Digit-alphabet

» Alphabet-digit

» Hyphenation

» All caps

» Cap period (initial)
» Digit.digit

» Digit,digit

» Currency symbol

» Cultural known names
» Email address

* URLs

» IP address

* Names

2005; Oct 10, 2005; 10/10/2005; 10/10/05
1-hour

F-16; 1-20

co-existence; black-tie party

CNN, BBC

N.

8.00

8,000

$, ...

M*A*S*H

mouse@hotmail.com

http://www.cnn.com

123.67.65.870

New York; Los Angles (Los Angles-New York flights 2?7??)
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Normalization of Tokens

 Using equivalence class of terms. Example rules:
— Ph.D > Phd
- US.A > USA
— 10/10/2005 - Oct 10, 2005
— F-16 > F16
— Variations of Umlaut words in German

» What about these rules?
— Windows > window (what if one is OS and one is a window???)
- C.AD. > cad (different meaning????)

Normalization of Tokens (cont’d)

Case folding - reduces term index by ~17%, but a lossy compression
— Convert all to lower case (most practical); or some to lower case

Spelling variations (neighbor vs. neighbour; a foreign name)

Accents on letters  (naive vs. naive; many foreign language terms)
Variant transliteration (Den-Haag vs. The Hague)

— Use Soundex algorithm!

More on normalization under Stemming....




Phrase processing

 Phrase recognition is based on the goal of indexing
meaningful phrases like
— “Lincoln Town Car”
— “San Francisco”
— “apple pie”
« Doing this would use word order to assist with

effectiveness -- otherwise we are assuming the
query and documents are just a “bag of words”

« ~10% of web queries are explicit phrase queries

Phrase processing

» Add phrase terms to the query just like

other terms

* This really violates independence assumptions but a
lot of people do it anyway

 Give phrase terms a different weight than
query terms
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Constructing Phrases
using n-gram words

Using bigrams, trigrams

Start with all 2-word pairs that are not
separated by punctuation, stop words, or
special characters

Only store those that occur more than x

times
— Example: New York; Apple Pie;...
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Constructing Phrases
using term positions

Store the term positions

Identify phrases at the query processing
time

Good flexibility for various window sizes
May be too slow for large collections
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Constructing Phrases
using Part-of-Speech Tagging
Can take advantage of NLP techniques:
 Using part-of-Speech tagging to identify
key components of a sentence (S-V-OBJ, ...)
— store all noun phrases “Republic of China”, or
— store adjective followed by noun “Red Carpet”

* Problem: too slow!
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Constructing Phrases
Using Named Entity Tagging

« Finding structured data within an unstructured
document

— People’s names, organizations, locations, amounts, etc.
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Phrase Processing Summary

» Pro
— Often found to improve effectiveness by 10%

 Con

— Dramatically increases size of term dictionary and
the size of the index
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Parser Generators

» Goal is to allow users to specify parsing
rules as grammars.

» Grammars provide a very flexible means of
expressing all valid strings in a language.
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Some useful regular expressions

Acronym: (["A"-"Z"]) (["A"-"Z"])*  Ex: NCR, IBM, etc.
Abbreviation: (["A"-"Z"]".")*  Ex: US.A.

Model: ["a"-"z" "A"-"Z"] "-" (["0"-"9"])*  Ex: F-16, C-25
Word: ["a"-"z" "A"-"Z"] (["a"-"z","A"-"Z" ])* Ex: hippo, Hippo
Integer: ["0"-"9"] (["0"-"9"])*  Ex: 123

Decimal: (["0"-"9"])*"." (["0"-"9"])+ Ex: 123.45
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Stemming

 Goal of stemming (Conflation) is to reduce
variations of each word due to inflection or
derivation to a common stem.

Improves effectiveness by providing a better
match between query and a relevant document.

User who is searching for “swimming” might be
interested in documents with “swim”.

Reduces the term index by ~17%
It is a lossy compression.

18




Stemming

e @ indexing time
— Storing only the stems

* Reduces the flexibility for certain context, improves
for some other

* Reduces index size
— Storing both stems and non-stemmed terms
* @ Query processing time

* Increases the flexibility of not stemming the Q terms
» Must expand the Q to all term variations (slow)
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Stemming Algorithms

« Stemming algorithms generate stem classes.

— Rule-Based
* Porter (1980)
 Lovins (1968)

— Dictionary-based
o K-stem (1989, 1993)

— Corpus/Co-Occurrence-Based (1994)

20
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Porter Stemmer

« An incoming word is cleaned up in the
initialization phase, one prefix trimming
phase then takes place and then five suffix
trimming phases occur.

» Note: The entire algorithm will not be
covered -- we will leave out some obscure
rules.
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Initialization
« First the word is cleaned up. Converted to

lower case only letters or digits are kept.
» F-16 is converted to f16.

22
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Porter Stemming

» Remove prefixes:
"kilo", "micro", "milli", "intra", "ultra",
"mega", "nano", "pico", "pseudo”

So megabyte, kilobyte all become “byte”.
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Porter Step 1

Replace “ing” with “e”, if number of consonant-vowels switches,
called measure, is grater then 3.
— liberating --> liberate, facilating--> facilate
Remove “es” from words that end in “sses” or “ies”
— passes --> pass, cries --> cfri
Remove “s” from words whose next to last letter is not an “‘s”
— runs --> run, fuss --> fuss
If word has a vowel and ends with “eed” remove the “ed”
— agreed --> agre, freed --> freed
Remove “ed” and “ing” from words that have other vowel
— dreaded --> dread, red --> red, bothering --> bother, bring --> bring
Remove “d” if word has a vowel and ends with “ated” or “bled”
— enabled --> enable, generated --> generate

(1))

Replace trailing “y” with an “I” if word has a vowel

— satisfy --> satisfi, fly --> fly
24
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Porter Step 2

« With what is left, replace any suffix on the left with suffix
on the right- only if the consonant-vowels measure >0

tional tion  conditional --> condition
ization ize nationalization --> nationalize
iveness ive effectiveness --> effective
fulness ful usefulness --> useful

ousness OUS  Nervousness --> Nervous

ousli ous  nervously --> nervous

entli ent  fervently --> fervent

iveness ive inventiveness --> inventive
biliti ble  sensibility --> sensible
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Step 3

»  With what is left, replace any suffix on the left with suffix on
the right

icate ic fabricate --> fabric (Think about this one)

ative -- combativ --> comb (another good one)
alize al nationalize --> national

iciti ic

ical ic tropical --> tropic

ful - faithful --> faith

iveness ive inventiveness --> inventive

ness -- harness --> har

26
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Step 4

» Remove remaining standard suffixes

al, ance, ence, er, ic, able, ible, ant, ement,
ment, ent, sion, tion, ou, ism, ate, iti, ous, ive,
ize, i1se
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Step 5

* Remove trailing “e” if word does not end in
a vowel
— hinge --> hing
— free --> free

28
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Porter Summary

e Con

— many words with different meanings have
common stems (e.g.; fabricate and fabric)

— a lot of stems are not words
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Dictionary based approaches
(K-Stem)

« Using dictionaries to ensure that the generated stem is
a valid word.
— Develop some candidate words by removing the endings

— Find the longest word that is in the dictionary that matches
one of the candidates.

 Pro: This eliminates the Porter problem that many
stems are not words.
» Con: Language dependent approach

30
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Corpus-based Co-Occurrence

« Use Porter or other stemmer to stem terms
* Place words in potential classes

« Measure the frequency of co-occurrence of terms
in the class

« Eliminate words from a class with a low co-
occurrence

» Remaining classes form stemming rules
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Corpus-based Co-Occurrence

* Pro
— Language independent (no need of dictionary)

— Based on assumption that terms in a class will co-occur
with other terms “hippo” will co-occur with “hippos”

— Improves effectiveness
« Con

— Computationally expensive to build co-occurrence
matrix (but you only do it every now and then)

32
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N-grams

 Noise such as OCR (Optical Character
Recognition) errors or misspelling lower the query
processing accuracy in a term-based search.

» The premise is:

— Substrings of a term may help to find a match in the
noise cases

 Replace terms with n-grams

 Language-independent -- no stemming or stop
word removal needed
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5-Gram Example

* Q: What technique works on noise and
misspelled words?

« D;: N-grams work on noisy mispelled text.

_work spell « 8 terms are matched

_on_no pelle « No stemming of work, noise
on_noi elled « Partial match of misspelled
n_nois lled_ word

34
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N-gram Summary

» Pro

— Language independent

— Works on garbled text (OCR, etc.)
« Con

— There can be a LOT of n-grams, dictionary may
not fit in memory anymore (thus, only some are kept)

— Query processing requires more resources
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Links

» Web documents contain link information
that is parsed and used for query processing
and ranking (ex: pageRank,...).

— Anchor text
— Inlinks and outlinks

36
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Token Processing Summary

» Token Processing can make a difference in
effectiveness

« Itis often overlooked
 Language independence approach is preferred

37
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