Indexing

(COSC 488)

Nazli Goharian
nazli@cs.georgetown.edu

Efficiency

« Difficult to analyze sequential IR algorithms: data and
query dependency (query selectivity).
« O(q(cf,,,)) -- high estimate

» No standard analytical model to estimate query
performance, henceempirical efforts.

Efficiency Techniques

* Indexing
» Compression

Indexing

Scanning Text
— Small document collection

Inverted index [1960°s]

— Reducing 1/0, thus, speeding query processing; storage
overhead; time overhead to build index

Signature files
— Smaller and faster; less functionality
Relational

— Higher overhead; supports integration of structured data
and text

Inverted Index

» Regardless of the retrieval strategy we need
a data structure to efficiently store:

— Foreach term in the document collection
* The list of documents that contain the term
« Number of documents having a term (df, idf)
* Foreach occurrence of aterm in a document

— Thefrequency the term appearsin the document (tf)

— The position in the document forwhich the term appears
(only needed if proximity search is supported).

» Position may be expressed assection, paragraph,
sentence, location within sentence.

Inverted Index

 Associates a posting list with each term
a (D1,7)(D2,5) (D3,19) (D4,11)...
abacus: (D7,1)
abatement: (D15,1) (D23,2)
iaology: (D8,1) (D32,2)

* Inverted because it lists for a term, all
documents that contain the term.

Inverted Index: Structure

 Document MApP (Document information: url, length, page rank,....)

* Term list/index (Lexicon/Vocabulary/Dictionary)- Stores distinct
terms and document frequency information (df, idf)

 Posting list-stores documents for a given term)

t1, [idf] D1| 5 [/)2 N

/
document identifier \
term frequency (tf)

t2 D1 5

Skip Pointers

* Tooptimize
» Join operation of O(m+n) for posting lists of size m and n
« Search fora given document d in the PL (will be discussed

later)
D30

tl | D1 D2 D15 D30 D32

t2 | D32 Q:<tl1ANDt2>

Query Processing using
Inverted Index

e Term-at-a-time:
— Foreach term, atatime, the inverted index is
accessed to calculate scores
« Document-at-a-time:

— Allinverted lists (posting lists relevantto the
query)areaccessed concurrently. In case of
Intersections between PLs, forward-skip
optimizations can be utilized.

10

Positional (Proximity) Index

* Posting List nodes may maintain position of
terms in each document for Proximity
search.

Apple, 3 — (D1,2,{1,5}) (D2.1, {10}) (D33, {1,7, 15}) ...
 Analternative to phrasing
« Expandsthe PL storage requirements

 Using both phrase and proximity can be
combined.

11

Term List
(Lexicon/Dictionary/Vocabulary)

+ Usually we have enough memory to store the term list in memory.

 Various options

— Sorted List: good for prefix lookup
+ Fixed length array -- wasteful
« String of characters (primary array of integers pointing to string of terms)
» Searchtree (binary, b+trees, trie,....)

— Hash table — with collision list; good for indexing (insert & lookup)
— Hybrid Approach

+ Canuse dictionary interleaving if term index is too large (subset of
terms in memory pointing to term index <term, posting> on disk)

12

Posting List

Mainly resides on disk
Brought into memory for processing
Contiguous posting entries for each term on disk

In memory posting:
— Array (variable length)
— Linked List (single link)

13

Memory Requirements

(single link list example)
« While in memory the posting list is not compressed.
» Typical entry

DoclD tf nextPointer
(4 bytes) (2 bytes) | (4 bytes)

« Foran 800,000,000 word collection, 400,000,000 posting
list entries were needed (many terms did not result in a
posting list entry because of stop words removal and
duplicate occurrences of a term within a document).

» With 400,000,000 posting list entries, at 10 bytes per entry,
we obtain a memory requirement of 4GB.

14

Index Construction Algorithms

All depends on the hardware availability

« Memory-based

— Assumption: enough memory is available to construct
and maintain the entire inverted index.

— Good if enough memory and small collection

 Disk-based
— Nomemory assumption; scaling to large collections
— Various implementations exist

15

Memory-based Index Construction

» Foreach document d in the collection

— Foreachtermtin documentd
* Find term tin the lexicon
« If termt exists, add anode to its posting list
 Otherwise,

— Addterm t to the lexicon
— Add a nodeto the posting list

« After all documents have been processed,
write the inverted index to disk.

16

Memory-based Inverted Index

 Phase I (parse and read)
— For each document
« Identify distinct terms in the document
« Update, in memory the posting list for each term
* Phase Il (write)

— For each distinct term in the index

« Write the inverted index to disk (feel free to
compress the posting list while writing it)

17

Memory Management

We usually don’t have more memory than
the size of the document collection.

Periodically must write inverted index to
disk.

Algorithm must be changed to periodically
write to disk a subset of the inverted index |
and then merge the subsets.

20

Disk based Index Construction
(Sort/Merge-based)

Read fixed chunk of data into memory
Tokenize
If needed create the term to term id mappings

build <term, doc> pairs; or <term, doc, tf> triples; or
<termand its postings> per implementation decisions

Create intermediate sorted files and write on disk

Perform m-way merging of intermediate files in
memory and write onto the disk

The outcomeis one final inverted file on disk.

21

Disk based Index Construction
(Sort/Merge-based)

Phase |
— Createtemp files of triples (termID, doclID, tf)

Phase Il
— Sort thetriples using external mergesort

Phase 11

— Mergethe sorted triples files (2-way; m-way)
Phase IV

— Build Inverted index from sorted triples

22

Disk based Index Construction
(Sort/Merge-based)

« Phasel (parseand build temp file)

— Foreach document

+ Parsetextinto terms, assign a term to a termID (use aninternal index
forthis)

 Foreachdistinct term in the document
— Write an entry to a temporary file with only triples <termlID, doclD, tf)

» Phasell (make sorted runs, to prepare for merge)

— Do Until End of Temporary File
« Sort thetriples in memory by term id and doc id.
» Write them outin a sorted run on disk.

23

10

Disk based Index Construction
(Sort/Merge-based)

tid did tid tf
Runl:| 1 d1 2 Sorted: | : a 2
3 di 1 1 d2 1
5 di 2 2 dl 4
2 d1 4 2 d2 3
4 di 1 3 dl 1
1 d2 1 4 d1 1
2 d2 3 5 d1 2
5 d2 3 5 d2 3
tid did tf tid did tf
Run2:| : d3 2 Sorted: 1 a3 2
2 d3 1 1 d4 2
4 d3 3 2 d3 1
2 d4 2 2 d4 2
3 d4 1 3 d4 1
5 d4 2 4 d3 3
4 d4 1 4 d4 1
1 d4 2 5 d4 2

24

Disk based Index Construction
(Sort/Merge-based)

« Phaselll (merge the runs)

Repeat until there is only one run
Merge pair-wise (2-way) or m-way sorted runs into a single run.

* PhaselV

— Foreach distinct term in final sorted run
« Starta new inverted file entry.
» Readalltriples fora given term (these will be in sorted order)
 Build the posting list (feel free to use compression)

» Write (append)this entry to the inverted index into a binary
file.

25

11

Disk based Index Construction
(Sort/ Merge-based)

=
al

S d di M q: tid d tf
orte 1 d1 2 ergea: a)
Runl: [-* a2 ! 1 d2 1
2 d1 4
1 d3 2
2 d2 3
1 da 2
3 di 1
2 d1 4
4 d1 1
s " 5 2 d2 3
5 d2 3 2 @ !
2 d4 2
tid did f
Sorted pra— 3 d !
RUN2: 3 da 1
e 4 2
d 4 d1 1
2 d3 1
4 d3 3
2 da 2
s w L 4 d4 1
4 a3 3 5 da 2
4 d4 1 5 d2 8
5 da 2 5 da 2

26

Disk based Index Construction
(Sort/Merge-based)

. tid did tf
Final =T, t1 [[q12|[d2,1[d3.2[d47]
Sorted | : a2 1
Run: 1 :j 2 t2 [d14[d2,3 [d3,1[d4,7
2 di 4 .
. T t3 b [dL[da] St_reamof Posting
) @ L List Nodes
IR t4 [[d19[d3.3[d4]
3 dil 1
3 d4 1
R 5 |- [d3[dz3[d2
4 d3 3
4 d4 1
5 di 2
5 @ 3 Inverted Index
5 d4 2

27

Alternatives

* Instead oftriples:

— <term, doc> pairs: after sorting then create the posting
with tf

— Foreach term create the posting directly in memory posting
<term and its postings> triples -- Good for dynamic
collection

* Instead ofterm id:
— Noneed forterm id at all. Lexicon keeps the terms
— No need for extra structure for the term to term id mapping

28

Disk-based Inverted Index
Summary

* Pro
— Not as fast as memory based, but itis scalable!

« Con
— Requires significant additional space.

31

13

Distributed Index

Single index — traditional approach

— Usesingle fast machine

— Good for someapplications (enterprise search)
Distributed index

— Useseveral/many fast machines (servers)

— Good for indexing tens of billions of pages
(largescale)

32

Query Servers

Each server has its own disk holdinga portion of
index

Queries aredistributed, via a centralized control, to
servers that contain the related posting lists

Commonterms may map to many servers
No single point of resource contention (efficient)

If a server crashes, that portionof index is not
available

33

14

Distributed Index (Cont’d)

« Web search tools access datadistributed on servers
worldwide butindexed centrally.

» Most ofthese systemshavea partitioned index with
a centralized control.

« Partitioning of index across multiple machines,
based on terms or documents

 Usingcontent-index, sending requeststo those
server thathavethedata

34

Partitioned Indexing

« Partitioning of index across multiple machines, based
oneither:

« Terms (Global index organization)
« Each node holds posting list for some terms
 Using content-index, query terms sent to nodes having the terms
 Higher concurrency level, but larger postings lists

» Documents (Local index organization)
 Each node holds a complete term index (shorter PLs)
* Query terms sent to all nodes
» Topk results from each node merged
+ Global statistics (e.g.. idf) must be calculated

« Tiered Indexing may be used

35

15

Index Tiering

» Apopularearlytermination technique to improve
the efficiency of query processing

 Dividingnodes into two tiers to allocate the index
of most popular documents on tier 1 and therest on
tier 2.

 Searchtier 1 first, if not enough results then search
tier 2.

* Note: other popular early termination techniques (top-doc and query pruning)
will be discussed!

36

Distributed Index Construction

* Not possibleon asingle machine
« Variousarchitecture for distributed indexing

« MapReduce architecture (aterm-partitioned index)

« Master node assignstasksto worker nodes (map
workers & reduce workers) to split up the
computing jobs:

* Map Phase: Parsing & building localized <term, doc>
pairs

* Reduce Phase: Combining/merging posting pairs for

each term
37

16

MapReduce (Cont’d)

Map & reduce phases can be done in parallel on many machines
A map machine can be a reducer machine in the process

Data broken into pieces (shards)...generally 16M-64 M [128M]
and send to map workers as they finish their job

Map workers work on one shard at a time (generally), unless having
more than one CPU, parse and generate <term,doc> pair (can be
combined to <term,doc,tf>

Sort based on term, and then secondary key (doc_id)
The same keys (terms) are assigned to the same reduce worker
Load should be balanced on the reducers

38

MapReduce (Cont’d)

Taken from: C. Manning, P. Raghavan & H. Schiitze, Introduction to Information Retrieval. Cambridge University Press., 2008.

splits assign assign
8,/‘ e d postings

- —
- —

segment
map files

39

17

Index in Dynamic Environment

« Data collection is not static

 Reconstructthe index periodically from scratch
(many search engines use this)

« Maintainan auxiliary index to store new document

« Maintain multiple indexes - complicated in
maintaining collection statistics

40

Signature Files

41

18

Signature Files

« Asignatureisanencodingof a document, using few
bits.

 Eachsignature may represent multiple docs.

« Thus, Two-Phase query processing:
— Phase 1: scan signatures and identify candidate signatures
— Phase 2: scan original text of the candidate signatures

42

Construction of Signatures

 Often usingone or more hashing functions for each
termto seta bit in a signature:

— h(information): 0101;
— h(retrieval): 1010;
— h(security): 0011
* ORthetermsignaturesofadocument to build
document signature
— D1: Information retrieval: 1111
— D2: security information: 0111

43

19

Processing of Signatures

» Boolean AND between query and document

Q> information: 0101
— D1: Information retrieval: 1111
— D2: security information: 0111

—match: D1 and D2
Q> security: 0011

— D1: Information retrieval: 1111
— D2:security information: 0111

=>match: D1 and D2 - false positive (false drop)

44

Processing of Signatures

« Boolean AND queries: all query terms must
return true

« Boolean OR queries: some query terms must
return true

45

20

Signature Files Summary

* Pros:
— Useful if can fit into memory

— Easyto add or remove documents (signatures) as
compared to inverted index.

— The order of signature in the signature file does not
matter.

 Cons:

— Two phased processing for false matches
— Does not rank the retrieved documents

46

Relational Approach will be
discussed In a separate set of
slides!

47

21

References

D. Grossman & O. Frieder, Information Retrieval Algorithms and Heuristics, 1998, 2™ Edition, Springer, 2004.

C. Manning, P. Raghavan & H. Schitze, Introduction to Information Retrieval. Cambridge University Press.,
200

S. Buttcher, C. Clarke, G. Cormack, Information Retrieval: Implementingand Evaluating search Engines
Addison Wesley, 2010

22

