
1

Indexing

(COSC 488)

Nazli Goharian

nazli@cs.georgetown.edu

2

Efficiency

• Difficult to analyze sequential IR algorithms: data and

query dependency (query selectivity).

• O(q(cfmax)) -- high estimate

• No standard analytical model to estimate query

performance, hence empirical efforts.

2

4

Efficiency Techniques

• Indexing

Compression

• Index Pruning (Top Doc)

• Efficient Query Processing

• Duplicate Document Detection

5

Indexing

• Scanning Text

– Small document collection

• Inverted index [1960’s]
– Reducing I/O, thus, speeding query processing; storage

overhead; time overhead to build index

• Signature files
– Smaller and faster; less functionality

• Relational

– Higher overhead; supports integration of structured data
and text

3

6

Inverted Index

• Regardless of the retrieval strategy we need
a data structure to efficiently store:

– For each term in the document collection

• The list of documents that contain the term

• Number of documents having a term (df, idf)

• For each occurrence of a term in a document
– The frequency the term appears in the document (tf)

– The position in the document for which the term appears
(only needed if proximity search is supported).

» Position may be expressed as section, paragraph,
sentence, location within sentence.

7

Inverted Index

• Associates a posting list with each term

• Inverted because it lists for a term, all

documents that contain the term.

a: (D1,7) (D2,5) (D3,19) (D4,11)…

abacus: (D7,1)

abatement: (D15,1) (D23,2)

…

zoology: (D8,1) (D32,2)

4

8

Inverted Index: Structure

• Document map (Document information: url, length, page rank,….)

• Term list/index (Lexicon/Vocabulary/Dictionary)- stores distinct

terms and document frequency information (df, idf)

• Posting list- stores documents for a given term)

 t1, [idf]

t2

D1 5 D2 1

D1 5
term frequency (tf)

document identifier

9

Skip Pointers

 t1 D1

• To optimize
• Join operation of O(m+n) for posting lists of size m and n

• Search for a given document d in the PL (will be discussed

later)

 D2 D15 D30 D32

D30

 t2 D32 Q: < t1 AND t2>

5

• Term-at-a-time:

– For each term, at a time, the inverted index is

accessed to calculate scores

• Document-at-a-time:

– All inverted lists (posting lists relevant to the

query) are accessed concurrently. In case of

intersections between PLs, forward-skip

optimizations can be utilized.

10

Query Processing using

 Inverted Index

11

Positional (Proximity) Index

• Posting List nodes may maintain position of
terms in each document for Proximity
search.

• An alternative to phrasing

• Expands the PL storage requirements

• Using both phrase and proximity can be
combined.

Apple, 3 (D1,2, {1,5}) (D2,1, {10}) (D3,3, {1,7, 15}) …

6

12

Term List
(Lexicon/Dictionary/Vocabulary)

• Usually we have enough memory to store the term list in memory.

• Various options

– Sorted List: good for prefix lookup

• Fixed length array -- wasteful

• String of characters (primary array of integers pointing to string of terms)

• Search tree (binary, b+trees, trie,….)

– Hash table – with collision list; good for indexing (insert & lookup)

– Hybrid Approach

• Can use dictionary interleaving if term index is too large (subset of

terms in memory pointing to term index <term, posting> on disk)

Posting List

• Mainly resides on disk

• Brought into memory for processing

• Contiguous posting entries for each term on disk

• In memory posting:

– Array (variable length)

– Linked List (single link)

13

7

14

• While in memory the posting list is not compressed.

• Typical entry

• For an 800,000,000 word collection, 400,000,000 posting
list entries were needed (many terms did not result in a
posting list entry because of stop words removal and
duplicate occurrences of a term within a document).

• With 400,000,000 posting list entries, at 10 bytes per entry,
we obtain a memory requirement of 4GB.

DocID tf nextPointer

(4 bytes) (2 bytes) (4 bytes)

Memory Requirements
(single link list example)

15

Index Construction Algorithms

All depends on the hardware availability

• Memory-based

– Assumption: enough memory is available to construct

and maintain the entire inverted index.

– Good if enough memory and small collection

• Disk-based

– No memory assumption; scaling to large collections

– Various implementations exist

8

16

Memory-based Index Construction

• For each document d in the collection

– For each term t in document d

• Find term t in the lexicon

• If term t exists, add a node to its posting list

• Otherwise,

– Add term t to the lexicon

– Add a node to the posting list

• After all documents have been processed,
write the inverted index to disk.

17

Memory-based Inverted Index

• Phase I (parse and read)

– For each document

• Identify distinct terms in the document

• Update, in memory the posting list for each term

• Phase II (write)

– For each distinct term in the index

• Write the inverted index to disk (feel free to

compress the posting list while writing it)

9

20

Memory Management

• We usually don’t have more memory than

the size of the document collection.

• Periodically must write inverted index to

disk.

• Algorithm must be changed to periodically

write to disk a subset of the inverted index I

and then merge the subsets.

21

Disk based Index Construction

(Sort/Merge-based)

• Read fixed chunk of data into memory

• Tokenize

• If needed create the term to term id mappings

• build <term, doc> pairs; or <term, doc, tf> triples; or
<term and its postings> per implementation decisions

• Create intermediate sorted files and write on disk

• Perform m-way merging of intermediate files in
memory and write onto the disk

• The outcome is one final inverted file on disk.

10

22

• Phase I

– Create temp files of triples (termID, docID, tf)

• Phase II

– Sort the triples using external mergesort

• Phase III

– Merge the sorted triples files (2-way; m-way)

• Phase IV

– Build Inverted index from sorted triples

Disk based Index Construction

(Sort/Merge-based)

23

• Phase I (parse and build temp file)

– For each document
• Parse text into terms, assign a term to a termID (use an internal index

for this)

• For each distinct term in the document

– Write an entry to a temporary file with only triples <termID, docID, tf)

• Phase II (make sorted runs, to prepare for merge)

– Do Until End of Temporary File
• Sort the triples in memory by term id and doc id.

• Write them out in a sorted run on disk.

Disk based Index Construction

(Sort/Merge-based)

11

24

tid

did

tf

 1

d1

2

 3

d1

1

 5

d1

2

 2

d1

4

 4

d1

1

 1

d2

1

 2

d2

3

 5

d2

3

tid

did

tf

 1

d3

2

 2

d3

1

 4

d3

3

 2

d4

2

 3

d4

1

 5

d4

2

 4

d4

1

 1

d4

2

tid

did

tf

 1

d1

2

 1

d2

1

 2

d1

4

 2

d2

3

 3

d1

1

 4

d1

1

 5

d1

2

 5

d2

3

Sorted:

tid

did

tf

 1

d3

2

 1

d4

2

 2

d3

1

 2

d4

2

 3

d4

1

 4

d3

3

 4

d4

1

 5

d4

2

Sorted:

Run1:

Run2:

Disk based Index Construction

(Sort/Merge-based)

25

• Phase III (merge the runs)

Repeat until there is only one run

Merge pair-wise (2-way) or m-way sorted runs into a single run.

• Phase IV

– For each distinct term in final sorted run

• Start a new inverted file entry.

• Read all triples for a given term (these will be in sorted order)

• Build the posting list (feel free to use compression)

• Write (append) this entry to the inverted index into a binary

file.

Disk based Index Construction

(Sort/Merge-based)

12

26

tid

did

tf

 1

d1

2

 1

d2

1

 2

d1

4

 2

d2

3

 3

d1

1

 4

d1

1

 5

d1

2

 5

d2

3

Merged:

tid

did

tf

 1

d3

2

 1

d4

2

 2

d3

1

 2

d4

2

 3

d4

1

 4

d3

3

 4

d4

1

 5

d4

2

tid

did

tf

 1

d1

2

 1

d2

1

 1

d3

2

 1

d4

2

 2

d1

4

 2

d2

3

 2

d3

1

 2

d4

2

 3

d1

1

 3

d4

1

 4

d1

1

 4

d3

3

 4

d4

1

 5

d1

2

 5

d2

3

 5

d4

2

Sorted

Run1:

Sorted

Run2:

Disk based Index Construction

(Sort/Merge-based)

27

Final

Sorted

Run:

tid

did

tf

 1

d1

2

 1

d2

1

 1

d3

2

 1

d4

2

 2

d1

4

 2

d2

3

 2

d3

1

 2

d4

2

 3

d1

1

 3

d4

1

 4

d1

1

 4

d3

3

 4

d4

1

 5

d1

2

 5

d2

3

 5

d4

2

t1

t2

t3

t4

t5

d1,2 d2,1

d1,2

d2,3 d1,4

d1,1

d1,1

d2,3

d3,2

d3,1

d3,3

d4,2

d4,2

d4,1

d4,1

d4,2

Inverted Index

Stream of Posting

 List Nodes

Disk based Index Construction

(Sort/Merge-based)

13

28

Alternatives

• Instead of triples:

– <term, doc> pairs: after sorting then create the posting

with tf

– For each term create the posting directly in memory posting

<term and its postings> triples -- Good for dynamic

collection

• Instead of term id:

– No need for term id at all. Lexicon keeps the terms

– No need for extra structure for the term to term id mapping

31

Disk-based Inverted Index

Summary

• Pro

– Not as fast as memory based, but it is scalable!

• Con

– Requires significant additional space.

14

32

Distributed Index

• Single index – traditional approach

– Use single fast machine

– Good for some applications (enterprise search)

• Distributed index

– Use several/many fast machines (servers)

– Good for indexing tens of billions of pages

(large scale)

33

Query Servers

• Each server has its own disk holding a portion of

index

• Queries are distributed, via a centralized control, to

servers that contain the related posting lists

• Common terms may map to many servers

• No single point of resource contention (efficient)

• If a server crashes, that portion of index is not

available

15

34

Distributed Index (Cont’d)

• Web search tools access data distributed on servers
worldwide but indexed centrally.

• Most of these systems have a partitioned index with
a centralized control.

• Partitioning of index across multiple machines,
based on terms or documents

• Using content-index, sending requests to those
server that have the data

35

Partitioned Indexing

• Partitioning of index across multiple machines, based

on either:

• Terms (Global index organization)
• Each node holds posting list for some terms

• Using content-index, query terms sent to nodes having the terms

• Higher concurrency level, but larger postings lists

• Documents (Local index organization)
• Each node holds a complete term index (shorter PLs)

• Query terms sent to all nodes

• Top k results from each node merged

• Global statistics (e.g.. idf) must be calculated

• Tiered Indexing may be used

16

36

Index Tiering

• A popular early termination technique to improve

the efficiency of query processing

• Dividing nodes into two tiers to allocate the index

of most popular documents on tier 1 and the rest on

tier 2.

• Search tier 1 first, if not enough results then search

tier 2.

• Note: other popular early termination techniques (top-doc and query pruning)

will be discussed!

37

Distributed Index Construction

• Not possible on a single machine

• Various architecture for distributed indexing

• MapReduce architecture (a term-partitioned index)

• Master node assigns tasks to worker nodes (map

workers & reduce workers) to split up the

computing jobs:

• Map Phase: Parsing & building localized <term, doc>

pairs

• Reduce Phase: Combining/merging posting pairs for

each term

17

38

MapReduce (Cont’d)

• Map & reduce phases can be done in parallel on many machines

• A map machine can be a reducer machine in the process

• Data broken into pieces (shards)…generally 16M-64 M [128M]

and send to map workers as they finish their job

• Map workers work on one shard at a time (generally), unless having

more than one CPU, parse and generate <term,doc> pair (can be

combined to <term,doc,tf>

• Sort based on term, and then secondary key (doc_id)

• The same keys (terms) are assigned to the same reduce worker

• Load should be balanced on the reducers

MapReduce (Cont’d)

39

Taken from: C. Manning, P. Raghavan & H. Schütze, Introduction to Information Retrieval. Cambridge University Press., 2008.

18

40

Index in Dynamic Environment

• Data collection is not static

• Reconstruct the index periodically from scratch

(many search engines use this)

• Maintain an auxiliary index to store new document

• Maintain multiple indexes - complicated in

maintaining collection statistics

41

Signature Files

19

42

Signature Files

• A signature is an encoding of a document, using few

bits.

• Each signature may represent multiple docs.

• Thus, Two-Phase query processing:

– Phase 1: scan signatures and identify candidate signatures

– Phase 2: scan original text of the candidate signatures

43

Construction of Signatures

• Often using one or more hashing functions for each

term to set a bit in a signature:

– h(information): 0101;

– h(retrieval): 1010;

– h(security): 0011

• OR the term signatures of a document to build

document signature

– D1: Information retrieval: 1111

– D2: security information: 0111

20

44

Processing of Signatures

• Boolean AND between query and document

Q> information: 0101

– D1: Information retrieval: 1111

– D2: security information: 0111

match: D1 and D2

Q> security: 0011

– D1: Information retrieval: 1111

– D2: security information: 0111

=> match: D1 and D2 - false positive (false drop)

45

Processing of Signatures

• Boolean AND queries: all query terms must

return true

• Boolean OR queries: some query terms must

return true

21

46

Signature Files Summary

• Pros:

– Useful if can fit into memory

– Easy to add or remove documents (signatures) as
compared to inverted index.

– The order of signature in the signature file does not
matter.

• Cons:

– Two phased processing for false matches

– Does not rank the retrieved documents

47

Relational Approach will be

discussed in a separate set of

slides!

22

References

• D. Grossman & O. Frieder, Information Retrieval Algorithms and Heuristics, 1998, 2nd Edition, Springer, 2004.

• C. Manning, P. Raghavan & H. Schütze, Introduction to Information Retrieval. Cambridge University Press.,
2008.

• S. Buttcher, C. Clarke, G. Cormack, Information Retrieval: Implementing and Evaluating search Engines,
Addison Wesley, 2010

