
1

Efficiency - Compression

(COSC 488)

Nazli Goharian

nazli@cs.georgetown.edu

© Goharian Grossman, Frieder, 2002, 2012

2

Efficiency Techniques

• Indexing

Compression

• Index Pruning (Top Doc)

• Efficient Query Processing

– Query thresholding

– Partial result set processing

3

Facts

• Index (specially position index) may be similar size or

generally larger than collection.

• Stop words removal eliminates about half the size of an

inverted index. “the” occurs in 7 percent of English text.

• Half of terms occur only once (hapax legomena), so they

only have one entry in their posting list

• Some terms have very long posting lists.

• Approaches:

– Stop word removal, stemming, case folding (lossy)
– Loss-less Compression

Sample Collection/Index Size

before & after Compression
(from: Information Retrieval, Buttcher, Clarke, Cormack)

4

Collection Collection

Uncompressed

Collection

Compressed

(gzip)

Index

Uncompressed

Index

Compressed

(vByte)

Shakespeare

TREC4-5

Gov2

7.5 MB

1904.5 MB

425.8 GB

2.0 MB

582.9 MB

79.9 GB

10.5 MB

2331.1 MB

328.3 GB

2.7 MB

533.0 MB

62.1 GB

5

Compression: Goal

• Reducing the storage requirements

• Reducing I/O

• Storing more data in memory cache, and expedite query
processing

• Efficiency of decompression algorithm is important!

6

Things to Compress

• Lexicon

– Not compressed, if fits in memory

– Compressed, if does not fit in the memory to

support query throughput

• Posting List

– Term Frequencies

– Document Identifiers

– Positions

7

Lexicon Compression

• Terms are in lexicographical order, sharing a

common prefix. To prevent storing duplicates, use

Front coding (generally saves ~40%), as

 (preffix lenght, suffix lengh, suffix)

 <“book”,(4,3,”ing”), (7,1,”s”)><“book”,(4,3,”let”)…>

• Storing terms in lexicon as a string with pointers

indicating end of a term and start of the next term.

• Hashing on terms

8

Delta (gaps) Encoding

• Change the numbers to smaller numbers, thus, fewer bits!

• More common terms -> larger PL-> smaller gaps-> smaller

numbers

• Applied to posting lists

– Term: <d1,tf1, {positions}, (d2,tf2),{positions}, ... (dn,tfn, {positions}>

• Documents are ordered, so each di is replaced by the interval

difference (d-gaps), namely, di - di – 1

• Smaller d-gaps for more common terms

• Index is reduced to ~15% of database size.

• Generally is applied first and then the gaps are further

compressed.

9

Compression Techniques of

Inverted Indices

• Fixed Length

– Byte Aligned

– …..

• Variable Length

– Elias Encoding (), a family of universal codes

– …

10

Byte-Aligned Compression

• Done within byte boundaries to improve Run-time at

slight cost to compression ratio.

• Each number is represented by fixed number of bytes,

from which 2 bits are length indicators.

• ~15-20% of uncompressed inverted index, when stop

words are used.

11

Byte-Aligned Compression

• Algorithm:

• Take doc id differences (d-gaps)

• Identify number of bytes needed for each d-gap.

• Write length indicator for each d-gap in preceding

2 bits.

• Write the binary representation of d-gaps.

12

Byte-Aligned Compression

00xxxxxx

01xxxxxx xxxxxxxx

10xxxxxx xxxxxxxx xxxxxxxx

11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

00000000

00000001

...

00111111

01000000 01000000

01000000 01000001

0 - 63

64 - (16K-1)

16K - (4M-1)

4M - (1G-1)

0

1

...

63

64

65

• The hope here is that the document distance between

posting list nodes will be small.

14

Gamma (Elias) Encoding ()

 X

 1 0

 2 10 0

 3 10 1

 4 110 00

 5 110 01

 6 110 10

 7 110 11

 8 1110 000

63 111110 11111

To represent value X:

• ones representing the highest

power of 2 not exceeding X.

• a 0 marker.

• bits representing the

remainder in binary.

• Uses bits to represent
value x. The smaller the integer, the
fewer the bits used to represent the
value. Most tf’s are relatively small.

x2log

x2log
x

x 2log
2

1log2 2 x

15

Gamma (Elias) Encoding () Example

X= 22

 = 4
4 is highest power of 2 not exceeding 22 => 4 bits unary: 1111

 = 22-24= 6
 => 4 bits binary to represent the remaining number 6: 0110

 1111 0 0110

 4 bits unary for 16 0 marker 4 bits binary for 6

• Decompression is in one pass.

54 22 x22log2

22log22x

16

Reordering Documents Prior to Indexing

• Reduce doc id gap for better compression

• Similar documents contain similar terms

• Thus, find similar documents and process in that order

d3, d50, d200 will be d1, d2, d3

• Methods:

– Clustering

– URL info (from same Web server, same directory,…)

– …..

17

Compression Summary

• Pro
– Reducing the storage requirements of inverted index

– Reducing I/O for querying the inverted index

– Reducing disk seek time

– Store more data in memory cache, and expedite processing

• Con
– Takes longer to build the inverted index.

– Software becomes much more complicated.

– Uncompress required at query time – note that this time is usually

offset by dramatic reduction in I/O.

