Efficiency - Compression

(COSC 488) Nazli Goharian

nazli@cs.georgetown.edu

© Goharian Grossman, Frieder, 2002, 2012

Efficiency Techniques

- Indexing
- **≻**Compression
- Index Pruning (Top Doc)
- Efficient Query Processing
 - Query thresholding
 - Partial result set processing

Facts

- Index (specially position index) may be similar size or generally larger than collection.
- Stop words removal eliminates about half the size of an inverted index. "the" occurs in 7 percent of English text.
- Half of terms occur only once (hapax legomena), so they only have one entry in their posting list
- Some terms have very long posting lists.
- Search engine must mange efficiently the memory hierarchy
- Approaches:
 - Stop word removal, stemming, case folding (lossy)
 Loss-less Compression

3

Sample Collection/Index Size before & after Compression

(from: Information Retrieval, Buttcher, Clarke, Cormack)

Collection	Collection Uncompressed	Collection Compressed (gzip)	Index Uncompressed	Index Compressed (vByte)
Shakespeare	7.5 MB	2.0 MB	10.5 MB	2.7 MB
TREC4-5	1904.5 MB	582.9 MB	2331.1 MB	533.0 MB
Gov2	425.8 GB	79.9 GB	328.3 GB	62.1 GB

Compression: Goal

- Reducing the storage requirements; compression ratio
- Reducing I/O
- Storing more data in memory cache, and expedite query processing
- Efficiency of decompression algorithm is important!

- 4

Things to Compress

- Lexicon
 - Not compressed, if fits in memory
 - Compressed, if does not fit in the memory to support query throughput
- Posting List
 - Term Frequencies
 - Document Identifiers
 - Positions

Lexicon Compression

• Terms are in lexicographical order, sharing a common prefix. To prevent storing duplicates, use *Front coding (generally saves ~40%), as*

```
(preffix lenght, suffix lengh, suffix)
<"book",(4,3,"ing"), (7,1,"s")><"book",(4,3,"let")...>
```

- Storing terms in lexicon as a string with pointers indicating end of a term and start of the next term.
- Hashing on terms

7

Delta (gaps) Encoding

- Change the numbers to smaller numbers, thus, fewer bits!
- More common terms -> larger PL-> smaller gaps-> smaller numbers
- Applied to posting lists
 - Term: $\langle d_1, tf_1, \{positions\}, (d_2, tf_2), \{positions\}, ... (d_n, tf_n, \{positions\} \rangle$
- Documents are ordered, so each d_i is replaced by the interval difference (*d-gaps*), namely,
 d_i d_{i-1}
- Smaller *d-gaps* for more common terms
- Index is reduced to ~15% of database size.
- Generally is applied first and then the gaps are further compressed.

Compression Techniques of Inverted Indices

- Fixed Length
 - Byte Aligned
- Variable Length
 - Elias Encoding (γ), a family of universal codes
 - Huffman

– ...

9

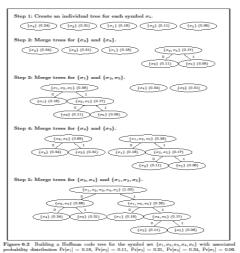
Byte-Aligned Compression

- Done within byte boundaries to improve Run-time at slight cost to compression ratio.
- Each number is represented by fixed number of bytes, from which 2 bits are length indicators.
- ~15-20% of uncompressed inverted index, when stop words are used.

Byte-Aligned Compression

- Algorithm:
 - Take doc id differences (*d-gaps*)
 - Identify number of bytes needed for each *d-gap*.
 - Write length indicator for each *d-gap* in preceding 2 bits.
 - Write the binary representation of *d-gaps*.

11


Byte-Aligned Compression

0 - 63	UUXXXXXX			
64 - (16K-1)	01xxxxxx xxxxxxxx			
16K - (4M-1)	10xxxxxx xxxxxxxx xxxxxxxx			
4M - (1G-1)	11xxxxxx xxxxxxxx xxxxxxx xxxxxxx			
0	00000000			
1	00000001			
•••				
63	00111111			
64	01000000 01000000			
65	01000000 01000001			
The hope here is that the document distance between				

• The hope here is that the document distance between posting list nodes will be small.

Huffman Coding

182 Information Retrieval: Implementing and Evaluating Search Engines · © MIT Press, 2010 · DRAFT

13

Gamma (Elias) Encoding (γ)

 $\frac{\mathbf{X}}{1} \quad \frac{\mathbf{Y}}{0}$

2 100

3 10 1

4 110 00

5 110 01

6 110 10

7 110 11

8 1110 000

63 1111110 111111

To represent value X:

- $\lfloor \log_2 x \rfloor$ ones representing the highest power of 2 not exceeding X.
- a 0 marker.
- $\lfloor \log_2 x \rfloor$ bits representing the remainder $x 2^{\lfloor \log_2 x \rfloor}$ in binary.
- Uses $2\lfloor \log_2 x \rfloor + 1$ bits to represent value x. The smaller the integer, the fewer the bits used to represent the value. Most tf's are relatively small.

Gamma (Elias) Encoding (γ) Example

$$X = 22$$

$$\lfloor \log_2 22 \rfloor = 4 \qquad 2^4 \le x < 2^5$$

4 is highest power of 2 not exceeding 22 => 4 bits unary: 1111

$$x - 2^{\lfloor \log_2 22 \rfloor} = 22 - 2^4 = 6$$

=> 4 bits binary to represent the remaining number 6: 0110

1111

0

0110

4 bits unary for 16 0 marker 4 bits binary for 6

• Decompression is in one pass.

15

Reordering Documents Prior to Indexing

- Reduce doc id gap for better compression
- Similar documents contain similar terms
- Thus, find similar documents and process in that order d_3 , d_{50} , d_{200} will be d_1 , d_2 , d_3
- Methods:
 - Clustering
 - URL info (from same Web server, same directory,...)

-

Compression Summary

• Pro

- Reducing the storage requirements of inverted index
- Reducing I/O for querying the inverted index
- Reducing disk seek time
- Store more data in memory cache, and expedite processing

• Con

- Takes longer to build the inverted index.
- Software becomes *much* more complicated.
- Uncompress required at query time note that this time is usually offset by dramatic reduction in I/O.