
1

 Goharian, Grossman, Frieder 2002, 2010

Retrieval Strategies:
Vector Space Model

and Boolean

(COSC 416)

Nazli Goharian
nazli@cs.georgetown.edu

 Goharian, Grossman, Frieder 2002, 2010

Retrieval Strategy

• An IR strategy is a technique by which a
relevance measure is obtained between a
query and a document.

2

 Goharian, Grossman, Frieder 2002, 2010

Retrieval Strategies

• Manual Systems
– Boolean, Fuzzy Set

• Automatic Systems
– Vector Space Model

– Language Models

– Latent Semantic Indexing

• Adaptive
– Probabilistic, Genetic Algorithms , Neural Networks,

Inference Networks

 Goharian, Grossman, Frieder 2002, 2010

Vector Space Model

• Most commonly used strategy is the vector space
model (proposed by Salton in 1975)

• Idea: Meaning of a document is conveyed by the
words used in that document.

• Documents and queries are mapped into term vector
space.

• Each dimension represents tf-idf for one term.
• Documents are ranked by closeness to the query.

Closeness is determined by a similarity score
calculation.

3

 Goharian, Grossman, Frieder 2002, 2010

• Consider a two term vocabulary, A and I

Query: A I
D1 - A I
D2 - A
D3 – I

Idea: a document and a query are similar as their
vectors point to the same general direction.

Document and query presentation
in VSM (Example)

A

Q and D1

D2

D3

I

 Goharian, Grossman, Frieder 2002, 2010

Weights for Term Components

• Using Term Weight to rank the relevance.
• Parameters in calculating a weight for a document

term or query term:

– Term Frequency (tf):Term Frequency is the number of times
a term i appears in document j (tfij)

– Document Frequency (df):Number of documents a term i
appears in, (dfi).

– Inverse Document Frequency (idf):A discriminating
measure for a term i in collection, i.e., how discriminating term i is.

(idf i) = log10(n / dfj), where n is the number of document

4

 Goharian, Grossman, Frieder 2002, 2010

Weights for Term Components

• Classic thing to do is use tf x idf

• Incorporate idf in the query and the document, one
or the other or neither.

• Scale the idf with a log

• Scale the tf (log tf+1) or (tf/sum tf of all terms in that document)

• Augment the weight with some constant (e.g.; w =
(w)(0.5))

 Goharian, Grossman, Frieder 2002, 2010

Weights for Term Components

• Many variations of term weight exist as the result of
improving on basic tf-idf

• A good one:

• Some efforts suggest using different weighting for document
terms and query terms. (Example: Inc.ltc – see book if
interested!)

()
()[]∑

=

+

+
=

t

j
jij

jij
ij

idftf

idftf
w

1

2*0.1log

*0.1log

5

 Goharian, Grossman, Frieder 2002, 2010

Similarity Measures

• Similarity Coefficient (SC) identifies the
Similarity between query Q and document Di

•Inner Product (dot Product)

•Cosine

•Pivoted Cosine

 Goharian, Grossman, Frieder 2002, 2010

Similarity Measures:
(Inner Product)

• Inner Product (dot product)

• Problem: Longer documents will score very high
because they have more chances to match query
words.

() ij

t

j
qji dxwDQSC ∑

=

=
1

,

6

 Goharian, Grossman, Frieder 2002, 2010

Similarity Measures:
(Cosine)

• Assumption: document length has no impact on the
relevance.

• Normalizes the weight by considering document length.
• Problem: Longer documents are somewhat penalized

because indeed they might have more components that are
indeed relevant [Singhal, 1997- Trec]

()
() ()∑ ∑

∑

=
=

==
t

j

t

j qjij

ij

t

j
qj

i

wd

dxw

DQSC

1
1

22

1,

 Goharian, Grossman, Frieder 2002, 2010

Document Length

Probability
of relevance

Probability of retrieval

Pivot
Slope

7

 Goharian, Grossman, Frieder 2002, 2010

Pivoted Cosine Normalization

• Comparing likelihood of retrieval and relevance in a
collection to identify pivot and thus, identify the new
correction factor.

Avgn: average document normalization factor over entire collection
s: can be obtained empirically

()

() ()
()

avgn

d

ss

dw

DQSC
t

j
ij

ij

t

j
qj

i

∑

∑

=

=

+−

=

1

2

1

0.1

,

 Goharian, Grossman, Frieder 2002, 2010

Pivoted Cosine Normalization

• Pivoted Cosine Normalization worked well for
short and moderately long documents.

• Extremely long documents are favored

8

 Goharian, Grossman, Frieder 2002, 2010

Pivoted Unique Normalization

dij = (1+log(tf))idf/ (1+log(atf)) where, atf is average tf
|di|: number of unique terms in a document.
p: average of number of unique terms documents over entire
collection
s: can be obtained empirically

() () () ()i

ij

t

j
qj

i dsps

dw

DQSC
+−

=
∑

=

0.1
, 1

 Goharian, Grossman, Frieder 2002, 2010

VSM Example
• Q: “gold silver truck”
• D1: “Shipment of gold damaged in a fire”
• D2: “Delivery of silver arrived in a silver truck”
• D3: “Shipment of gold arrived in a truck”

• Id Term df idf
1 a 3 0
2 arrived 2 0.176
3 damaged 1 0.477
4 delivery 1 0.477
5 fire 1 0.477
6 gold 2 0.176
7 in 3 0
8 of 3 0
9 silver 1 0.477
10 shipment 2 0.176
11 truck 2 0.176

9

 Goharian, Grossman, Frieder 2002, 2010

VSM Example

• Computing SC using inner product:
• SC(Q, D1) = (0)(0) + (0)(0) + (0)(0.477) + (0)(0) + (0)(0.477)

+ (0.176)(0.176) + (0)(0) + (0)(0)

doc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

D1 0 0 .477 0 .477 .176.176 0 0 0 .176 0

D2 0 .176 0 .477 0 0 0 0 .954 0 .176

D3 0 .176 0 0 0 .176 0 0 0 .176 .176

Q 0 0 0 0 0 .176 0 0 .477 0 .176

 Goharian, Grossman, Frieder 2002, 2010

Algorithm for Vector Space
(dot product)

Begin

Score[] � 0

For each term t in Query Q

Obtain posting list l

For each entry p in l

Score[p.docid] = Score[p.docid] + (p.tf * t.idf)(q.tf * t.idf)

•Assume: t.idf gives the idf of any term t

•q.tf gives the tf of any query term

•Now we have a SCORE array that is unsorted.

•Sort the score array and display top x results.

10

 Goharian, Grossman, Frieder 2002, 2010

Summary: Vector Space Model

• Pros
– Fairly cheap to compute
– Yields decent effectiveness
– Very popular

• Cons
– No theoretical foundation
– Weights in the vectors are arbitrary
– Assumes term independence

 Goharian, Grossman, Frieder 2002, 2010

Boolean Retrieval

• For many years, most commercial systems were
only Boolean.

• Most old library systems and Lexis/Nexis have a
long history of Boolean retrieval.

• Users who are experts at a complex query language
can find what they are looking for.
(t1 AND t2) OR (t3 AND t7) WITHIN 2 Sentences
(t4 AND t5) NOT (t9 OR t10)

• Considers each document as bag of words

11

 Goharian, Grossman, Frieder 2002, 2010

Boolean Retrieval

• Expression:=
– term

– (expr)

– NOT expr (not recommended)

– expr AND expr

– expr OR expr

• (cost OR price) AND paper AND NOT article

 Goharian, Grossman, Frieder 2002, 2010

Boolean Example

doc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

D1 0 0 1 0 1 1 0 0 0 1 0

D2 1 1 0 1 0 0 0 0 1 0 1

D3 1 1 0 0 0 1 0 0 0 1 1

D4 0 0 0 0 0 1 0 0 1 0 1

Q: t1 AND t2 AND NOT t4

0110 AND 0110 AND 1011 = 0010 That is D3

12

 Goharian, Grossman, Frieder 2002, 2010

Processing Boolean Queries

• Doc-term matrix is too sparse, thus, using
inverted index

• Query optimization in Boolean retrieval:

The order in which posting lists are accessed!

 Goharian, Grossman, Frieder 2002, 2010

Processing Boolean Query
t1 AND t2

• Algorithm:
Find t1 in index (lexicon)

Retrieve its posting list

Find t2 in index (lexicon)

Retrieve its posting list

Intersect (merge) the posting lists

The matching DodIDs are added to the result list

13

 Goharian, Grossman, Frieder 2002, 2010

Processing Boolean Query
t1 AND t2 AND t3

• What is the best order to process this?

• Process in the order of increasing document
frequency, i.e, smaller Posting Lists first!

• Thus, if t1, t2 have smaller PL than t3, then
process as:

(t1 AND t2) AND t3

 Goharian, Grossman, Frieder 2002, 2010

Intersection of Posting Lists

Algorithm
Sort query terms based on document frequency

Merge the smallest posting list with the next smallest posting
list and create the result set

Merge the next smaller posting list with the result set, update
the result set

Continue till no more terms left

14

 Goharian, Grossman, Frieder 2002, 2010

Processing Boolean Query
(t1 OR t2) AND (t3 OR t4) AND (t5 OR t6)

• Using document frequency estimate the size
of disjuncts

• Order the conjuncts in order of smaller
disjuncts

 Goharian, Grossman, Frieder 2002, 2010

Boolean Retrieval

• AND returns too few documents (low recall)

• OR return too many document (low precision)

• NOT eliminates many good documents (low
recall)

• Proximity information not supported

• Term weight not incorporated

15

 Goharian, Grossman, Frieder 2002, 2010

Extended (Weighted) Boolean
Retrieval

• Extended Boolean supports term weight and
proximity information.

• Example of incorporating term weight:
• Ranking by term frequency (Sony Search Engine)

x AND y: tfx x tfy
x OR y: tfx + tfy
NOT x: 0 if tfx > 0, 1 if tfx = 0

• User may assign term weights
cost and +paper

 Goharian, Grossman, Frieder 2002, 2010

Summary of Boolean Retrieval

• Pro
– Can use very restrictive search

– Makes experienced users happy

• Con
– Simple queries do not work well.

– Complex query language, confusing to end
users

