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Retrieval Strategy

• An IR strategy is a technique by which a 
relevance measure is obtained between a 
query and a document.
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Retrieval Strategies

• Manual Systems
– Boolean, Fuzzy Set

• Automatic Systems
– Vector Space Model

– Language Models

– Latent Semantic Indexing

• Adaptive
– Probabilistic, Genetic Algorithms , Neural Networks, 

Inference Networks
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Vector Space Model

• Most commonly used strategy is the vector space 
model (proposed by Salton in 1975)

• Idea: Meaning of a document is conveyed by the 
words used in that document.

• Documents and queries are mapped into term vector 
space.

• Each dimension represents tf-idf for one term.
• Documents are ranked by closeness to the query.  

Closeness is determined by a similarity score 
calculation.
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• Consider a two term vocabulary, A and I

Query: A I
D1 - A I
D2 - A
D3 – I

Idea: a document and a query are similar as their 
vectors point to the same general direction.

Document and query presentation 
in VSM (Example)

A

Q and D1

D2

D3

I
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Weights for Term Components

• Using Term Weight to rank the relevance.
• Parameters in calculating a weight for a document 

term or query term:

– Term Frequency (tf):Term Frequency is the number of times 
a term i appears in document j (tfij )

– Document Frequency (df):Number of documents a term i
appears in, (dfi).

– Inverse Document Frequency (idf):A discriminating 
measure for a term i in collection, i.e., how discriminating term i is.

(idf i) = log10(n / dfj),  where n is the number of document
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Weights for Term Components

• Classic thing to do is use tf x idf

• Incorporate idf in the query and the document, one 
or the other or neither. 

• Scale the idf with a log

• Scale the tf (log tf+1)  or (tf/sum tf of all terms in that document)

• Augment the weight with some constant (e.g.; w = 
(w)(0.5))  
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Weights for Term Components

• Many variations of term weight exist as the result of 
improving on basic tf-idf

• A good one:

• Some efforts suggest using different weighting for document 
terms and query terms. (Example: Inc.ltc – see book if 
interested!)
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Similarity Measures

• Similarity Coefficient (SC) identifies the 
Similarity between query Q and document Di

•Inner Product  (dot Product)

•Cosine

•Pivoted Cosine
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Similarity Measures: 
(Inner Product) 

• Inner Product (dot product)

• Problem: Longer documents will score very high 
because they have more chances to match query 
words.
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Similarity Measures: 
(Cosine)

• Assumption: document length has no impact on the 
relevance.

• Normalizes the weight by considering document length.
• Problem: Longer documents are somewhat penalized 

because indeed they might have more components that are 
indeed relevant [Singhal, 1997- Trec]
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Document Length

Probability
of relevance

Probability of retrieval

Pivot
Slope
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Pivoted Cosine Normalization

• Comparing likelihood of retrieval and relevance in a 
collection to identify pivot and thus, identify the new 
correction factor.

Avgn: average document normalization factor over entire collection 
s: can be obtained empirically 
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Pivoted Cosine Normalization

• Pivoted Cosine Normalization worked well for   
short and moderately long documents. 

• Extremely long documents are favored
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Pivoted Unique Normalization

dij = (1+log(tf))idf/ (1+log(atf)) where, atf is average tf
|di|: number of unique terms in a document.
p:  average of number of unique terms documents over entire 
collection
s: can be obtained empirically 
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VSM Example
• Q: “gold silver truck”
• D1: “Shipment of gold damaged in a fire”
• D2: “Delivery of silver arrived in a silver truck”
• D3: “Shipment of gold arrived in a truck”

• Id Term df idf
1 a 3 0
2 arrived 2 0.176
3 damaged 1 0.477
4 delivery 1 0.477
5 fire 1 0.477
6 gold 2 0.176
7 in 3 0
8 of 3 0
9 silver 1 0.477
10 shipment 2 0.176
11 truck 2 0.176
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VSM Example

• Computing SC using inner product:
• SC(Q, D1 ) = (0)(0) + (0)(0) + (0)(0.477) + (0)(0) + (0)(0.477) 

+ (0.176)(0.176) + (0)(0) + (0)(0)

doc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 

            

D1 0 0 .477 0 .477 .176.176 0 0 0 .176 0 
            
D2 0 .176 0 .477 0 0 0 0 .954 0 .176 
            
D3 0 .176 0 0 0 .176 0 0 0 .176 .176 
            
Q 0 0 0 0 0 .176 0 0  .477 0 .176 
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Algorithm for Vector Space 
(dot product) 

Begin

Score[] � 0

For each term t in Query Q

Obtain posting list l

For each entry p in l 

Score[p.docid] = Score[p.docid] + (p.tf * t.idf)(q.tf * t.idf)

•Assume: t.idf gives the idf of any term t

•q.tf gives the tf of any query term 

•Now we have a SCORE array that is unsorted.

•Sort the score array and display top x results.
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Summary: Vector Space Model

• Pros
– Fairly cheap to compute
– Yields decent effectiveness
– Very popular

• Cons
– No theoretical foundation
– Weights in the vectors are arbitrary
– Assumes term independence

 Goharian, Grossman, Frieder 2002, 2010

Boolean Retrieval

• For many years, most commercial systems were 
only Boolean.  

• Most old library systems and Lexis/Nexis have a 
long history of Boolean retrieval.

• Users who are experts at a complex query language 
can find what they are looking for.
(t1 AND t2) OR (t3 AND t7) WITHIN 2 Sentences 
(t4 AND t5) NOT (t9 OR t10)

• Considers each document as bag of words



11

 Goharian, Grossman, Frieder 2002, 2010

Boolean Retrieval

• Expression:= 
– term

– (expr)

– NOT expr  (not recommended)

– expr AND expr

– expr OR expr

• (cost OR price) AND paper AND NOT article
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Boolean Example

doc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 

            

D1 0 0 1 0 1 1 0 0 0 1 0 
            
D2 1 1 0 1 0 0 0 0 1 0 1 
            
D3 1 1 0 0 0 1 0 0 0 1 1 
            
D4 0 0 0 0 0 1 0 0  1 0 1 
 

Q: t1 AND t2 AND NOT t4

0110 AND 0110 AND 1011 = 0010   That is D3



12

 Goharian, Grossman, Frieder 2002, 2010

Processing Boolean Queries

• Doc-term matrix is too sparse, thus, using 
inverted index

• Query optimization in Boolean retrieval: 

The order in which posting lists are accessed!
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Processing Boolean Query
t1 AND t2

• Algorithm:
Find t1 in index (lexicon)

Retrieve its posting list

Find t2 in index (lexicon)

Retrieve its posting list

Intersect (merge) the posting lists

The matching DodIDs are added to the result list
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Processing Boolean Query
t1 AND t2 AND t3

• What is the best order to process this?

• Process in the order of increasing document 
frequency, i.e, smaller Posting Lists first!

• Thus, if t1, t2 have smaller PL than t3, then 
process as:

(t1 AND t2) AND t3
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Intersection of Posting Lists

Algorithm
Sort query terms based on document frequency

Merge the smallest posting list with the next smallest posting 
list and create the result set  

Merge the next smaller posting list with the result set, update 
the result set

Continue till no more terms left
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Processing Boolean Query
(t1 OR t2) AND (t3 OR t4) AND (t5 OR t6)

• Using document frequency estimate the size 
of disjuncts

• Order the conjuncts in order of smaller 
disjuncts 
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Boolean Retrieval

• AND returns too few documents  (low recall)

• OR return too many document  (low precision)

• NOT eliminates many good documents (low 
recall)

• Proximity information not supported

• Term weight not incorporated
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Extended (Weighted) Boolean 
Retrieval

• Extended Boolean supports term weight and 
proximity information. 

• Example of incorporating term weight:
• Ranking by term frequency (Sony Search Engine)

x AND y: tfx x tfy
x OR y: tfx + tfy
NOT x: 0 if tfx > 0, 1 if tfx = 0

• User may assign term weights
cost and +paper
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Summary of Boolean Retrieval

• Pro
– Can use very restrictive search

– Makes experienced users happy

• Con
– Simple queries do not work well.

– Complex query language, confusing to end 
users


