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Abstract

This paper describes a partial-memory incremental
learning method based on the AQ15c inductive learning
system.  The method maintains a  representative set of
past training examples that are used together with new
examples to appropriately modify the currently held
hypotheses. Incremental learning is evoked by feedback
from the environment or from the user.  Such a method
is useful in applications involving intelligent agents
acting in a changing environment, active vision, and
dynamic knowledge-bases.  For this study, the method
is applied to the problem of computer intrusion
detection in which symbolic profiles are learned for a
computer system’s users.  In the experiments, the
proposed method yielded significant gains in terms of
learning time and memory requirements at the expense
of slightly lower predictive accuracy and higher concept
complexity, when compared to batch learning, in which
all examples are given at once.

1 Introduction

This paper describes a partial-memory incremental
learning method.  The method is based on the AQ
inductive learning algorithm and uses Variable-Valued
Logic (VL1) as a representation language [1, 2, 3, 4].
The proposed method is incremental in that (a) static
concepts are learned over time, and (b) concepts that
change over time are learned.  The proposed method
operates using a partial-memory mode [5], in which
representative examples are maintained throughout the
learning process that maximally expand and constrain
learned concepts in the event space.  Learned concepts
aid in determining the set of representative concepts.
This partial-memory scheme is contrasted by no-
memory incremental learning (e.g., reinforcement
learning), and full-memory incremental learning [6, 5,
7].

New applications, such as intelligent agents (e.g.,
[8]) and active vision (e.g., [9]), require autonomous or
semi-autonomous functioning and adaptation to
changes in the domain, the environment, or the user.
Such requirements suggest that incremental learning, as
opposed to batch learning, is needed.  As experimental

results presented here demonstrate, when compared to
batch learning, partial-memory incremental learning
yields faster learning times and reduced memory
requirements at the expense of slightly lower predictive
accuracy.  Although incremental learning is needed in
application areas such as intelligent agents and active
vision, the application considered here is a dynamic
knowledge-based system for computer intrusion
detection [10].

Quite a bit of research has been conducted in
attempts to statistically model user behavior [11, 12,
13, 14].  Statistical models, or profiles, once acquired,
are subsequently used to verify that a user’s recent
behavior is consistent with past behavior.  While a
statistical approach to this problem is certainly valid,
there are advantages to the machine learning approach
taken here.  These advantages include using both
statistical and logical information when learning user
profiles, learning symbolic concepts which can be
inspected and understood by humans, and finally,
because learned concepts are directly accessible,
incremental learning is possible, which allows the
system to adapt to changes in a user’s behavior over
time.  See [15] for a more complete literature review.

The organization of this paper is as follows.  The
next section introduces the incremental learning
architecture and method based on VL1 and the AQ
algorithm.  Section 3 describes experimental results.
The paper concludes with a discussion of the results and
directions for future work.

2 Methodology

Viewing an intrusion detection application as a
concept learning problem gives rise to two distinct
phases (see Figure 1).  The first phase, or the start-up
phase, involves collecting an initial set of training
examples such that a sufficient concept can be learned
and will provide the system with enough inferential
capability to be useful in its intended environment.
This phase equates to the historical and traditional
paradigm of concept learning or learning from
examples.

The second phase, or the update phase, involves
installing the system in its environment where it
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Figure 1. Partial-memory incremental learning
architecture and methodology.

should function in a semi-autonomous fashion.  During
the update phase, the system must incrementally learn
and adapt to changes in the environment or in the
behaviors of users.  Incremental learning is required
when an observation is misclassified, which is
determined by feedback from the teacher (or user) or
from the environment.

After the initial concepts have been learned in the
start-up phase and the system has been deployed, the
learned concepts are used for inference.  The system
will receive reinforcement or criticism from its
environment, its user, or both.  If the system makes a
wrong decision, then this is a signal that the system’s
concepts require refinement.  The misclassified training
example is included with the existing representative
examples and inductive learning takes place.  Once new
concepts are learned, the training examples are evaluated
and those determined to be representative are selected to
form the new set of representative examples.  The new
concepts are used for inference and the new
representative training examples are stored.  This
process repeats indefinitely.
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Figure 2. Partial-memory incremental learning.

A partial-memory incremental learning approach
uses learned concepts to determine which training
examples establish the outer bounds of a concept.
Referring to Figure 2, assume that for some event
space or representation space E, we have a collection of
positive and negative examples and that we have learned
some concept c that is complete and consistent.  That
is, the concept covers all of the positive examples and

none of the negative examples.  The representative
positive examples of a concept are those examples that
lie at the boundaries of the concept in the event space
(i.e., the outlined plus signs), while the representative
negative examples are those that constrain the concept
in the event space (i.e., the outlined minus signs).  All
other training examples can be discarded.

Several issues must be addressed when applying a
partial-memory incremental learning method to a
problem.  The first concerns how representative
examples are chosen.  The second involves how these
representative examples are maintained throughout the
incremental learning process.  Regarding the first issue
of how representative examples are chosen, for this
study maximally general examples were used that either
expanded or constrained concepts in the representation
space.  Specifically, the attribute values for the
attributes appearing in learned rules were retained, while
other attribute values were changed to unknown or
don’t care values.  The set of representative examples
was the set union of these maximally general
examples, to eliminate redundancies.

The second issue involves how representative
examples are maintained throughout the incremental
learning phase.  This is an important consideration
since examples are generalized and what is considered
representative early in incremental learning may not
remain representative throughout the incremental
learning phase.  Consequently, attributes whose values
are discarded early may prove to be better in later
stages.  On the other hand, fewer generalized examples
are likely to be kept than specialized examples.  One
method is to eliminate old representative examples as
what is considered ‘representative’ changes.  Another
method, the method used here, is to keep all past
representative examples regardless of how the
representative examples change.  The first method
would probably be suitable for rapidly changing
domains, whereas the second method would yield better
results in more stable domains.

This method is summarized in the following
algorithm:

Given data partitions DATAi, for i = 1..10
0. i = 1
1. TRAIN i = DATAi
2. CONCEPTSi = Learn(TRAINi)
3. REPRESENTATIVEi =

FindRepresentativeExamples(CONCEPTSi, TRAINi)
4. MISSEDi = FindMissedNewExamples(CONCEPTSi,

DATA i+1)
5. TRAIN i+1 = REPRESENTATIVEi ∪ MISSEDi
6. i = i + 1
7. go to step 2

The counter i  represents a temporal counter that
signifies the passage of time in the system’s
environment.  When i  = 1, steps 1–3 relate to the
start-up phase.  The remaining steps of the algorithm
for i = 1 and under different values of i relate to the
update phase.  Representative examples are found in
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step 3 using the method described previously.  In step
4, missed examples are found by testing new
observations, which are represented by DATAi+1, using
the current set of learned concepts CONCEPTSi.
Those missed examples are identified by a user and are
communicated to the system as criticism.  No feedback
is viewed as reinforcement.  The set of representative
examples and the set of misclassified examples are
given back to the learning algorithm that incrementally
learns new concepts.

2 . 1 Application to Intrusion Detection

The proposed incremental learning method was
applied to the problem of computer system intrusion
detection.  Typically, an intruder masquerades as one of
the legitimate system users.  If machine learning could
be used to learn use patterns for the users of the
computer system, then these patterns could be used to
detect intruders.  This research is most similar to the
work of Teng et al. [17] in the sense that we are
inductively learning symbolic rules.  It differs in that
we do not learn from temporal sequences of actions.

In a traditional concept learning scenario, we
divide training examples into classes, express the
training examples in a representation space that
facilitates learning and assert that the examples
themselves are sufficient for learning the intended
concept.  For this application, we might be tempted to
divide patterns into classes relating to a “legitimate
user” and “intruder”, but collecting examples of an
intruder’s behavior would be a difficult task, since
intrusions are a relatively infrequent events.  Rather, we
should learn use patterns for classes of users or for
individual users on the system.  In all legitimate uses,
the user’s login name should match the decision given
by the system.  If the system’s decision does not match
the user’s login name, then the user is possibly an
intruder and appropriate security actions can be taken.
These would include making a entry in a systems log
file or even forcing the suspect user off the system.

Because of AQ’s flexible matching algorithm
[16], the intrusion detection system not only produces a
decision or classification (i.e., a user’s identity), but it
also provides a measure of certainty using the degree of
match.  The degree of match functions similarly to the
abnormality measure in NIDES [18].

3 Experimental Results

A series of experiments was conducted using Unix
acctcom audit data. Accounting data was collecting for a
period of three weeks yielding over 11,200 audit
records.  A set of experiments involved partial-memory
incremental learning from two of the system’s active
users.  Only two users were selected, since the bulk of
the experimentation was carried out manually.
Performance comparisons are made between AQ15c

batch learning and partial-memory incremental learning.
Further details regarding batch learning experimental
results and the specific learning parameters used can be
found in [15].

3 . 1 Data Preparation

The first task involved extracting training
examples for each user.  A session is defined as a
contiguous period of activity bounded by a gap in
activity of 20 minutes or more.  This includes idle time
and logouts.  Audit data produced by the Unix acctcom
command was parsed into sessions by user.  Attributes
were then computed from the various data fields in the
audit file.  Each numeric metric in an audit file is a
time series.  Davis [19] characterized time series data
for symbolic learning by taking the minimum,
maximum, and average values of a time series over a
window.  For this application, a window is a session of
activity.  Average, maximum, and minimum
computations were made for seven metrics in the audit
file: the real time, CPU time, user time, characters
transferred, blocks read and written, the CPU factor, and
the hog factor.  Consequently, each training example,
which was derived from a single user session, consisted
of 21 continuous or real-valued attributes.  Totally,
there were 239 training examples distributed over 9
classes, which correspond to 9 selected users.

AQ15c requires discrete-valued attributes, so the
SCALE implementation [20] of the ChiMerge
algorithm [21] was used.  The ChiMerge algorithm
merges real-valued attributes into discrete intervals
using the chi-square statistic to correlate intervals to
classes.  For example, the minchar attribute, which is
the minimum number of characters transferred during a
session, ranged from 0.0 to 18747.28.  ChiMerge
determined that only seven discrete levels were needed
for this attribute.  After ChiMerge scaling, attribute
levels for the training data ranged between 5 and 76.

The final step in data preparation was to select the
most relevant attributes.  The entropy measure [22] and
the PROMISE score [23] were computed for each
discrete attribute.  Those attributes with a low score
(below 0.9) were discarded, leaving 13 attributes, as
follows: average and maximum real time, average and
maximum system time, average and maximum user
time, average and maximum characters transferred,
average blocks transferred, average and maximum CPU
factor, and average and maximum hog factor.

3 . 2 Incremental Learning Experimental
Method

Two classes were selected from the original
training data.  Batch learning experiments on the entire
data set are reported by Maloof and Michalski [15].
The training data for these two classes were partitioned
into 10 sets and used for partial-memory incremental
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learning experiments, which were compared to AQ15c
batch learning.  The batch learning experiment involved
accumulating the training examples from the 10 data
partitions for learning.  Partial-memory incremental
learning was carried out using the algorithm described
above.  For these experiments, the incremental
algorithm was executed manually for the 10 data
partitions.

3 . 3 Incremental Learning Experimental
Results

Several experimental comparisons were made
between AQ15c batch learning and partial-memory
incremental learning using a variety of metrics,
namely, predictive accuracy, learning time, rule
complexity, and the number of examples maintained
during learning.  Figure 3 illustrates how AQ15c’s
predictive accuracy varies with respect to the portion of
training data under batch and partial-memory
incremental learning.  Although the difference in
predictive accuracy is large early in the learning
process, toward the end of learning, predictive accuracy
differs by only 2%.

Figure 4 provides a learning time comparison
between AQ15c batch and partial-memory incremental
learning.  After the first learning step, incremental
learning time was consistently less than 0.1 CPU
seconds.

Figure 5 demonstrates the number of examples
each approach, partial-memory and batch learning,
required.  Although batch learning required a linearly
increasing quantity examples produced only a moderate
increase in predictive accuracy of 2% over partial-
memory incremental learning.

The final comparison, illustrated by Figure 6,
shows how batch learning and partial-memory
incremental learning compare with respect to rule
complexity, or the number of conditions in the learned
concepts.  Batch learning produced less complex rules
than partial-memory learning, but this is possibly an
artifact of how partial-memory learning was carried out,
which was manually.  There are probably ways to
optimize rules based on the representative examples
that will yield simpler rules.  This notion will be
investigated during implementation.

Note that these results are consistent with the
full-memory incremental learning results reported by
Reinke and Michalski [5].  Future work will compare
partial-memory incremental learning with AQ15 full-
memory incremental learning.

4 Discussion and Future Work

Figure 7 shows two AQ15c rules induced for
users daffy and elmer.  These rules were taken from the
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best performing rule set that achieved a predictive
accuracy of 96% on testing data.  The rule that
characterizes daffy’s computer use is simple, consisting
of one complex and one condition.  The rule says that
if the maximum real time for a user is equal to 16, then
this user is daffy.  Note that the value 16 represents a
range of values because of ChiMerge scaling.  The t-
weight and u-weight describe the strength of the
complex.  The t-weight indicates the total number of
training examples this rule covers, while the u-weight
indicates how many of those examples are unique (i.e.,
not covered by other complexes).

daffy-rule
# complex
1 [maxreal=16]   (t-weight:16, u-weight:16)

elmer-rule
# complex
1 [maxsys=8..18] & [maxchar=10..20]

(t-weight:7, u-weight:2)
2 [maxreal=0..11] & [avgblks=14..48] &

[avgcpu=1..26] & [avghog=13..35]
(t-weight:6, u-weight:1)

Figure 7. AQ15c rules for daffy and elmer.

The rule for elmer’s use, on the other hand, is
more complex, consisting of 2 complexes and a total of
7 conditions.  The first complex, for example, covers a
total of 7 training examples, but only two of those
examples are unique.  The second complex covers a
total of 6 examples, but only one of these is unique.
This implies that there is great overlap among these
two complexes.  Referring again to the first complex of
elmer’s rule, in order for this complex to be true, under
strict matching conventions, the maximum system
time must be inclusively between 8 and 18, and the
maximum number of characters transferred must be
inclusively between 10 and 20.  Again note that these
discrete intervals relate to much larger real ranges, but
were abstracted by the ChiMerge algorithm.  If these
two conditions are true, then the symbol “elmer” will
be assigned as the decision class.  Otherwise, the
second complex will be tested in much the same
manner.

Experimental results suggest that partial-memory
incremental learning is beneficial.  Although these
experiments demonstrate that partial-memory
incremental learning resulted in slightly higher rule
complexity and slightly lower predictive accuracy than
batch learning, significant decreases were seen in the
CPU time spent learning and in the number of
examples maintained over time.  Future work will be
on the implementation of these ideas, which will allow
larger experiments to determine how this approach
scales up to more complex problems.

As an intrusion detection system, clearly more
behavioral factors need to be included into this system
to increase viability and predictive accuracy.  Future

work will involve incorporating symbolic data (e.g.,
terminal names, command names) and structured data
(e.g., command hierarchies), and if temporal trends
exist (e.g., daffy always works in the afternoon and
evening, but not in the morning), investigating how
they be exploited to yield higher predictive accuracy.

5 Conclusions

This paper describes a partial-memory incremental
learning method and applies it to the problem of
computer intrusion detection.  The proposed
incremental learning architecture and method is
especially useful in such applications as intelligent
agents working in dynamic environments, active
vision, or computer intrusion detection. This is because
of the need for the system to interact with users and the
environment, and adapt their behavior to the changing
conditions.  The described method for partial-memory
incremental learning yielded significant improvements
over batch learning in terms of the number of examples
maintained and the learning time,  at the cost of
slightly lower predictive accuracy and higher rule
complexity.
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