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Talk Overview

• Brief overview of machine learning (27%)

• Main topics (50%):
– learning with partial instance memory
– static and changing concepts
– application to intrusion detection

• Other projects with other people:
– machine learning to improve Budds, a vision system that
detects buildings in overhead imagery (20%)

– Analysis of competing classifiers using components of
variance of roc measures (0%)

• Project on the horizon... (3%)
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Learning from Examples

• One way humans (and computers) learn is from examples

• Imagine a child learning the concept ‘dog’

spaniel dog +
husky dog +
retriever dog + ← positive example
cat not a dog − ← negative example
cow not a dog −
wolf not a dog −
boxer dog +
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What is Being Learned?

• How does the child know it’s a dog?

• What features does the child use to recognize the dog?
Its shape? color? fur? sound?

• What is the child learning?
– learning the features that are predictive of dogs?
“This animal has fur and barks, so it is a doggie”

– remembering specific cases?
“This animal sounds more like Lassie than Garfield,
so it’s a doggie”

– is she doing a little of both?
– should machines do a little of both?
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Testing and Generalization

• How do we know the child has learned ‘dog’?

Show her a poodle Child: dog Correct
Show her a lion Child: not a dog Correct
Show her a hyena Child: dog Oops, incorrect

• So we have the notions of training and testing
– overtraining: performs well on the training examples,
performs poorly on the testing examples

• We also have the notion of generalization:
– she correctly identified the poodle and the lion but had
never seen them before

– over-generalization: everything is a dog!
– under-generalization: nothing is a dog!
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Accuracy and Error Costs

• By counting mistakes, we can measure accuracy:
– true positive: saying ‘doggie’ to Lassie
– true negative: saying ‘not a doggie’ to Garfield
– false positive: saying ‘doggie’ to a hyena
– false negative: saying ‘not a doggie’ to a doberman

• How should performance change with more and more training?
– hopefully it increases! (unless we overtrain)

• Mistakes have different costs:
– saying ‘not a doggie’ to a poodle: low cost
– saying ‘doggie’ to a grizzly bear: HIGH COST!
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Evaluation Methodology

• Like parents with children, ML researchers want to show their
learning method is best!

• Or find the best method for an application

• How to do this in an unbiased way?
– run experiments
– IMPORTANT: Train on a randomly selected portion of the
data and test on the remainder

– plot accuracy: errors, types of errors
– examine trade-offs
– plot learning curves (i.e., accuracy over time)

– plot accuracy at different decision thresholds (ROC analysis)

• Other performance measures: time, space, understandability of
learned concepts
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ROC Analysis

• ROC ≡ Receiver Operating Characteristic

• Lets us evaluate performance for a variety of error costs

• ROC curve plots the true positive and false positive rates at
various decision thresholds

• The point (0, 1) is where classification is perfect, so we want
curves that “push” toward this corner

• Traditional ROC analysis uses area under the curve as the
measure of performance
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The Basics of Rule Learning

The aq algorithm (Michalski, 1969)

1. Start with positive and negative training examples

2. Pick one positive training example

3. Form a rule by generalizing it as much as possible without
“covering” a negative example

4. Remove the positive examples covered by the rule

5. Until covering all positive examples, goto Step 2

6. Repeat for the negative class, goto Step 2
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Learning the Concept of “Who can vote”

• Attributes:
– gender ∈ { M, F }

– age ∈ { 1, . . . , 120 }

• Training examples:

gender age vote?
M 54 yes
F 42 yes
M 22 yes
F 32 yes
F 11 no
M 14 no
M 8 no
F 16 no
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Learning the Concept of “Who can vote”

• Pick a positive example: 〈 M, 22, yes 〉

• Rule: vote ← [gender = M] & [age = 22]

• Generalize gender: vote ← [gender = M ∨ F] & [age = 22]

• Cover any negative examples? No!

• Generalize age: vote ← [gender = M ∨ F] & [age > 22]

• Cover any negative examples? No!

• Generalize age: vote ← [gender = M ∨ F] & [age > 16]

• Cover any negative examples? No!

• Final rule: vote ← [age > 16]
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On-line Learning

• Training examples distributed over time

• But system must always be able to perform

• Temporal-Batch Learning
1. Learn rules from examples
2. Store rules, store examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, add to current examples
5. Goto step 1

• Incremental Learning
1. Learn rules from examples
2. Store rules, discard examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, learn new rules using old rules

and new instances
5. Goto step 2
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Concept Memory

• Full: Learner stores concept descriptions, changing them only
when new examples arrive (e.g., winnow)

• No: Learner stores no concept descriptions that generalize
training examples (e.g., ib2)

• Partial: Learner stores concept descriptions and modifies them
but not necessarily in response to the arrival of new training
examples, like weight decay (e.g., favorit)
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Instance Memory

• Full: Learner stores all examples from the input stream
(e.g., id5, gem)

• No: Learner stores no examples (e.g., id4, aq11)

• Partial: Learner stores some examples (e.g., lair, hillary,
flora, darling, MetaL(b), MetaL(ib), aq-pm, aq11-pm)
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Classification of Learning Systems

FAVORIT

AQ11

instance
memory

full instance
memory

partial
instance
memory

partial

memory
full instance

AQ-PM

DARLING
AQ-15c

C4.5

memory
no instance

STAGGER
Winnow

CN2

partial
instance
memory

LAIR

FLORA2, 3, 4

HILLARY

MetaL(B), MetaL(IB)

ID4

full instance
memory

GEM
ID5
ITI

memory
no instance

AQ11-PM, GEM-PM

full concept memory

temporal batch incremental

On-line Learning Systems

IB2
IB1

partial concept memoryno concept memory

incremental
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Algorithm for Learning with
Partial Instance Memory

1. Learn rules from training examples

2. Select a portion of the examples

3. Store rules, store examples

4. Use rules to predict, navigate, etc.

5. When new examples arrive

• if incremental learning, then

– learn new rules using old rules, new instances, and
examples held in partial memory

• if temporal-batch learning, then

– learn new rules using new instances and examples held in
partial memory

6. Combine new instances with those in partial memory

7. Goto step 2
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Selecting Examples for Partial Memory

• lair: the first positive example only

• hillary: only the negative examples

• darling: examples near the centers of clusters

• ib2: misclassified examples

• MetaL(b), MetaL(ib): sequence over a fixed window of time

• flora: sequence over a changing window, set adaptively

• aq-pm, aq11-pm, gem-pm: examples on the boundaries of
rules (i.e., extreme examples), possibly over a fixed window of
time
– for the rule: vote ← [age > 16]

– extreme examples: 〈 F, 16, No 〉 and 〈 M, 22, Yes 〉
– mark the boundary between the concepts ‘Can Vote’ and
‘Cannot Vote’
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Visualization of Training Examples:
Discrete Version of the Iris Data Set
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Induced Characteristic Rules

setosa ← [pl = 0] & [pw = 0] &

[sl = 0..3] & [sw = 0, 2..4]

versicolor ← [pl = 1] & [pw = 1..2] &

[sl = 1..6] & [sw = 0..4]
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Visualization of Induced Rules
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Visualization of Extreme Examples
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Evaluation of Learning Systems

• ib2: Instance-based learner. Selects misclassified examples

• flora2: Incrementally learns disjunctive rules. Selects
examples over a window of time. Heuristic adjusts window size

• aq11: Incrementally learns disjunctive rules. No instance
memory. A lesioned version of aq11-pm. Pascal
implementation

• aq-bl: Temporal-batch learner. Disjunctive rules. Full
instance memory. A lesioned version of aq-pm.
C implementation

• aq11-pm: Incrementally learns disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. Wrapper implementation

• aq-pm: Temporal-batch learner. Disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. C implementation
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Computer Intrusion Detection

• Learning behavioral profiles of computing use for detecting
intruders (also misuse)

• Derived our data set from the unix acctcom command

• Three weeks, over 11,200 records, selected 9 of 32 users

• Segmented into sessions: logouts and 20 minutes of idle time

• For each session, computed minimum, average, and maximum
for seven numeric metrics

• Selected 10 most relevant: maximum real time, average and
maximum system and user time, average and maximum
characters transferred, average blocks read and written,
maximum cpu factor, average hog factor

• Divided data into 10 partitions, used 1 for testing, 9 for
training, applied methods, and repeated 30 times
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Computer Intrusion Detection:
Predictive Accuracy
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Computer Intrusion Detection:
Memory Requirements
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The STAGGER Concepts
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for time steps 1–39.
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for time steps 80–120.
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The STAGGER Concepts:
Predictive Accuracy
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The STAGGER Concepts:
Memory Requirements
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Observations

• For static concepts, partial-memory learners, as compared to
lesioned versions, tend to:

– decrease predictive accuracy—often slightly

– decrease memory requirements—often significantly

– decrease learning time—often significantly

– can decrease concept complexity

– has little effect on performance time

• For changing concepts,

– track concepts better than incremental learners with no
instance memory (e.g., stagger, aq11)

– aq11-pm tracks concepts comparably to flora2
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Current and Future Work:
Partial-Memory Learning

• Better characterization of performance using synthetic data
sets: cnf, dnf, m-of-n, class noise, concept overlap

• Scale to larger data sets: Just acquired 10 GB of audit data

• Track changing concepts in real data sets

• Evaluate effect of skewed data

• Prove bounds for predictive accuracy and examples maintained

• Heuristics to adapt size of forgetting window
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Machine Learning to Improve Budds,
A Vision System that Detects Buildings

in Overhead Imagery

Joint work with:
Pat Langley (ISLE & Stanford)

Tom Binford (Stanford)
Ram Nevatia (USC)

Sponsors: DARPA through ONR, Sun Microsystems
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Opportunities for Learning with Budds

• Lin and Nevatia (1996) present one approach to detecting
buildings in radius images; Budds uses knowledge at a
number of levels:

1. Grouping pixels into edge elements (i.e., edgels)
2. Grouping edgels into lines
3. Finding junctions and parallel lines
4. Combining junctions and parallels into ‘Us’
5. Grouping ‘Us’ into parallelograms (rooftop candidates)

6. Verifying rooftop candidates (walls, shadows, overlap)
7. Generating 3D building descriptions

• Learning can occur at any of these levels, but we focused on
rooftop detection (step 5)
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Attributes for Representing Rooftop
Candidates

• Budds uses nine continuous attributes to evaluate rooftop
candidates:

1. Support for corners
2. Support for parallel lines
3. Support for orthogonal trihedral vertices
4. Support for corner shadows
5. Gaps in the edges of the candidate
6. Displacement of edge support
7. Lines crossing the candidate
8. Existence of adjacent L-junctions and T-junctions

• We included each of these features in the training and test
descriptions used for learning
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Highlights of the Study

• Six images of Fort Hood, TX.

• Different locations, different aspects (nadir and oblique)

• Built a labeling tool that draws candidate rooftops on images

• Unequal and unknown error costs; highly skewed data set

• roc analysis to compare classifiers

• Learning methods outperformed handcrafted classifier

• Evaluated generalization across location and aspect (Maloof,
Langley, Binford, & Nevatia, 1998)

• User studies (Ali, Langley, Maloof, Sage, & Binford, 1998)

• Investigated multi-level learning (Maloof, 2000)
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Visualization Interface for Labeling
Rooftop Candidates
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ROC Curve for All Image Data
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Areas Under the ROC Curves

Classifier Area under ROC Curve
C5.0 0.867±0.006
Naive Bayes 0.854±0.009
Perceptron 0.853±0.010
k-NN (k = 11) 0.847±0.006
Budds Classifier 0.802±0.014

ANOVA: p < 0.01, LabMRMC: p < 0.001∗

∗ The current implementation of LabMRMC is limited to five treatments (i.e., learning

algorithms), so we conducted this analysis for the best five and not all twelve.
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Project on the Horizon...

• Security in Ad hoc Networks

– Levine and Fagg (UMass), Royer and Almeroth (UCSB),
Maloof and Shields (Georgetown)

– proposed to National Science Foundation

– machine learning for anomaly detection
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