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Abstract. Malicious insiders do great harm and avoid detection by us-
ing their legitimate privileges to steal information that is often outside
the scope of their duties. Based on information from public cases, con-
sultation with domain experts, and analysis of a massive collection of
information-use events and contextual information, we developed an ap-
proach for detecting insiders who operate outside the scope of their du-
ties and thus violate need-to-know. Based on the approach, we built and
evaluated elicit, a system designed to help analysts investigate insider
threats. Empirical results suggest that, for a specified decision threshold
of .5, elicit achieves a detection rate of .84 and a false-positive rate
of .015, flagging per day only 23 users of 1, 548 for further scrutiny. It
achieved an area under an roc curve of .92.
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1 Introduction

Recently, the fbi arrested analyst Leandro Aragoncillo after he allegedly “con-
ducted extensive keyword searches relating to the Philippines” and “printed
or downloaded 101 classified documents”, also relating to the Philippines [1].
Although Aragoncillo was an intelligence analyst, information about the Philip-
pines was “outside the scope of his assignments” [1].

We are interested in detecting this type of malicious insider, but the problem
of detecting insiders is much more complex and multi-faceted. For instance, ma-
licious insiders are often disgruntled [2], so better working environments could
lead to a reduced threat. Better processes for screening employees could also
reduce the threat. On corporate intranets, one may be able to deploy methods
traditionally used against external intruders to counter an insider who is, say,
attempting to gain unauthorized access to a server. In contrast, we are interested
in detecting malicious insiders who operate within their privileges, but who en-
gage in activity that is outside the scope of their legitimate assignments and
thus violate need-to-know.

In this paper, we describe our efforts to develop and evaluate methods of
detecting insiders who violate need-to-know. Based on analysis, research, and
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consultation with domain experts, we designed an approach that consists of four
main steps. First, decoders process network traffic from protocols associated with
the use of information into higher-level information-use events. Second, a suite
of detectors, supplanted with contextual information about users, groups, and
organizations, examines these events and issues alerts. Third, a Bayesian network
uses these alerts as evidence and computes threat scores. Fourth, an interface
presents events, alerts, and threat scores of users to security analysts. Based
on this approach, we implemented a system named elicit, which stands for
“Exploit Latent Information to Counter Insider Threats.”

To support elicit’s development and evaluation, we derived a data set from
284 days of network traffic collected from an operational corporate intranet. Over
a period of 13 months, we processed 16 terabytes of raw packets into more than
91 million information-use events for more than 3, 900 users. We then examined
these events to characterize the searching, browsing, downloading, and printing
activity of individuals, groups of individuals, and the organization as a whole.
We built 76 detectors and a Bayesian network that, together, produce an overall
threat score for each user in the organization.

To evaluate our approach and elicit, a red team developed scenarios based
on information from real, publicly-available cases. They translated the scenarios
to the target environment and executed them during normal network operation.
A trusted agent3 used scripts to insert events of the scenarios into our collection
of events. We then ran elicit, as would an analyst, in an effort to identify the
users corresponding to the scenarios.

Over a period of two months, using a specified decision threshold of .5, elicit

detected the insiders on 16 of the 19 days they were acting maliciously, corre-
sponding to a detection rate of .84. During this same period, elicit scored an
average of 1, 548 users per day, with an average of only 23 users scoring high
enough to warrant further scrutiny, meaning that elicit’s average false-positive
rate is .015. By varying the decision threshold, we produced an roc curve, the
area under which was .92.

2 Problem Statement

There are many detection tasks important for securing systems, their software,
and their information, such as detecting intruders [3, 4], and anomalous com-
mand [5] and system-call [6] sequences. We focus on the task of detecting misuse,
defined as legitimate users abusing their privileges.

Detecting misuse is a complex, multi-faceted problem, and malicious insid-
ers, or simply insiders, may engage in a variety of activities. Insiders could use
knowledge of their organization’s intranet and behave in a manner similar to an
intruder. Such activities could include scanning ports, executing buffer overflows,
and cracking password files, and one can detect these activities with methods of

3 Herein, all uses of the term trusted agent refer to the person serving as the interme-
diary between the red team and the research team.
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intrusion detection. Insiders could also masquerade as another user by compro-
mising his or her account. However, in our work, we are interested in detecting
malicious insiders who do not engage in these activities.

In a computing system, access-control mechanisms yield a set of illegal and
legal actions for each user. Such actions include viewing certain documents, and
so, there will be documents that a user can and cannot view. Unfortunately,
for large, dynamic organizations, it is difficult to design and maintain effective
access control. Consequently, given the set of legal actions for a user, there is a
set of such actions that is suspect, especially given contextual information about
the user. In our work, we are interested in detecting insiders who browse, search,
download, and print documents and files to which they have access, but that
are inappropriate or uncharacteristic for them based on contextual information,
such as their identity, past activity, and organizational context.

Our conception of detecting insiders is quite different than detecting external
intruders. One rarely, if ever, has the contextual information for such intruders
that one has for insiders. Our aim is to leverage this context for detection.
It is also different than detecting internal intruders, since insiders who violate
need-to-know do not need to break rules to achieve their goals. All detection
systems must analyze events at correct levels of abstraction, and the insiders
of interest to us usually gather and exfiltrate documents. Consequently, rather
than detecting malicious activity based on connections, packets, or system-call
sequences, we chose to detect insiders based on information-use events, which
we describe further in the next section.

3 Data Collection

We derived the data set for our study from an operational corporate intranet.
In the following subsections, we describe how we processed network traffic into
information-use events, collected contextual information about users and the
information they accessed, and developed scenarios for the purpose of evaluation.

3.1 Transforming Network Traffic into Information-Use Events

To collect network events, we placed passive sensors between clients and servers
within a large corporate intranet for 284 days.4 The sensors collected packets
from network protocols correlated with the legitimate use of information, a criti-
cal aspect of our work. In total, we captured approximately 16 terabytes of data,

4 We experienced three outages. Two months into the period, an administrative error
resulted in an outage for two days. Three months later, an unanticipated network
reconfiguration caused a near-complete loss of data for five days. Four months into
collection, we discovered and corrected an error in the software that captured packets.
Subsequent analysis indicating that the flawed version failed to capture about 9% of
the packets, with the majority of the loss occurring during traffic bursts. Nonetheless,
data from this period was helpful for analysis and development. Crucially, the red
team did not execute the scenarios until after we resolved these problems.
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Table 1. Information Stored for Events

Actions
Field List Delete Read Write Move Print Query Send

Protocol X X X X X X X X
File Name/Path X X X X X X X X
Start/Stop Time X X X X X X X X
Client/Server ip X X X X X X X X
User Name X X X X X X X X
Bytes X X
Original File Name X
Printer X
Pages X
Search Phrase X
E-mail Headers X

corresponding to 27 billion packets. In the collection, 61% of packets were from
the smb protocol, 35% were from http, 3%, from smtp, and 1%, from ftp.

We developed a series of protocol decoders to transform the packets into
information-use events. These decoders also tracked authenticated users across
sessions and captured clues about their identity, which aided in subsequent attri-
bution. Off-line, the trusted agent used Ethereal [7] to filter and dissect packets,
and then applied our decoders to produce information-use events. Over a period
of 13 months, the decoders processed more than 3.7 billion packets, producing
more than 91 million events, which we stored in a relational database.

Referring to Table 1, each event consisted of an action and variable number
of fields. Decoders extracted eight actions. In our collection, 35.8% of the actions
were lists of files or directories, 42.1% were reads, 12.9% were writes, 4.6% were
deletes, 2.9% were sends of e-mail, 1.1% were search-engine queries, 0.4% were
prints of documents, and 0.3% were moves of files or directories. The decoders
also extracted fields such as the start and end time of the action, the protocol
involved, and other pertinent information. Table 2 contains an example of a
print event in which user p0314508p printed a document named Liz’s form

fax.doc to the printer \\spool2\335-HP. Values for all other fields are null.

With the exception of send, we selected these actions and fields based on
analysis of past insider cases and hypotheses about which would be useful for
detecting violations of need-to-know. Then, during decoder development, we
implemented routines to capture information from e-mail because we realized
that it would be useful for constructing social networks.

We did not collect data directly on clients, so our approach is network-based,
rather than host-based. In the environment we monitored, it would have been
impractical—though desirable—to instrument every machine with the software
necessary to collect events. We also did not collect packets inbound from or
outbound to the Internet due to concerns about privacy. If our approach were
used in an organization where such technical and privacy issues could be re-
solved, elicit’s design is flexible enough to accommodate these new sources of
information.
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Table 2. Example of the Relevant Fields of a Print Event

Field Value

Action print

Protocol smb

File Name Liz’s form fax.doc

Start Time 2005-02-03 10:32:16.993

Stop Time 2005-02-03 10:32:17.003

Client ip ddd.ddd.ddd.13

Server ip ddd.ddd.ddd.239

User Name p0314508p

Bytes 2672

Printer \\spool2\335-HP

Pages 1

3.2 Collection of Contextual Information

In addition to events, we developed sensors that periodically collected contextual
information about the users and the information they accessed and manipulated.
This included information from an employee directory, such as name, office loca-
tion, job description, seniority, and projects. We also copied the contents of files
in users’ public directories on a shared file system, and we extracted information
from the directory structure itself, the branches of which often corresponded to
users, projects, and the organization’s business units. We stored this information
in a database, and Table 3 shows an example.

With this contextual information, we were able to build simple social net-
works with e-mail traffic, use a person’s job description in the analysis of his or
her search-engine queries, and determine if someone printed to a printer close to
his or her office. It also let us compare a user’s behavior to that of peers, such
as those with the same job description and those working on the same floor, in
the same department, and on joint projects.

These comparisons illustrate a critical aspect of our work. We are not simply
examining network events between client and server ip addresses. We are mon-
itoring how users access and manipulate information, and we are coupling this
activity with contextual information about the users and the information itself.

3.3 Data Anonymization

To protect the privacy of the users, the trusted agent removed, anonymized,
or abstracted any identifying information before releasing it to us, the research
team. The trusted agent removed hire dates and phone numbers, replaced names
and user ids with pseudonyms, and abstracted office numbers to their floor.

An important concern is whether the process of anonymization introduced
artifacts that may have affected detection. For this study, phone numbers and
hire dates were not important for detection, so their removal was not problem-
atic. Name and user id are not relevant for detection, but are critical as labels
connecting events and detector outputs. However, pseudonyms serve this purpose
equally well.
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Table 3. Example of Contextual Information for User p0314508p

Field Value

User Name p0314508p

E-mail Address p0314508p

User id p0314508p

Home Directory s:\p0314508p\public

Department Accounts Payable

Division Purchasing

Office Location 7th Floor

Job Title General Accounting Specialist

Job Category General Accounting

Job Level 3

Project 1 Accounts Payable

Project 2 Travel Accounting

Abstracting office location to its floor did make it difficult or impossible
to conduct certain analyses, which may have negatively affected detection. For
example, we could not identify relationships between people who shared offices
or who worked in adjacent offices. Since ours is a research effort, we had to
accept that there was certain information we simply could not use or collect.
Nonetheless, even without this information, our results are promising.

3.4 Event Attribution

To use an individual’s context, such as their job description or social network,
we had to attribute each event to a user. Unfortunately, not all sessions, and
thus not all events, had information about the user who produced them. For
example, unprotected Windows file shares and web sites requiring no authenti-
cation generated events without identifying information. In the database, such
events have null values for their user ids.

Our collection contained three types of events: unattributed events, indirectly-
attributed events, and events directly attributed to a user because of an observed
successful authentication. For example, most smb sessions begin with an au-
thentication, and we can then attribute subsequent events of the session to the
authenticated user. Indirectly attributed events are those with some type of user
context, such as the sender’s address in an e-mail. Of the more than 91 million
events, 14.7% were directly attributed, 2.3% were indirectly attributed, and 83%
were initially unattributed.

With network engineers familiar with the network environment, we devised
two off-line methods to label unattributed events. Both used events occurring
before and after an unattributed event. The first was a nearest-neighbor method
that attributes an unattributed event to the user of the closest attributed event,
as measured by time. The second method uses a kernel function to give more
weight to the attributed events closer to the unattributed event. To reflect the
uncertainty of attribution sources (e.g., due to configuration or human errors),
network engineers determined measures of confidence for each, assigning print
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events a weight of .999, send events a weight of .99, and ftp events a weight of
.9. Directly attributed events had a weight of 1 and unattributed events had a
weight of 0.

An attribution event ei is then a 3-tuple 〈ui, wi, ti〉, where ui is the id of the
attributed user, wi is the weight, and ti is the time of occurrence. For a given
client ip address, there is a sequence of attribution events with and without
attribution. Let S be a sequence of n events ordered by ti, and let S(u) be the
sequence of events from S attributed to user u:

S(u) = {〈ui, wi, ti〉 : 〈ui, wi, ti〉 ∈ S ∧ ui = u} .

If ei is an unattributed event (i.e., ui = ∅) occurring in the middle of sequence
S (i.e., i = n/2), then we attribute ei to the user in the sequence whose actions
have the maximum weight. That is, given the kernel function

K(ei, ej) = wje
−γ(ti−tj)

2

,

where γ determines the width of the kernel,

ui = argmax
u∈S

(

∑

ej∈S(u) K(ei, ej)
)

.

For each unattributed event in a sequence, we applied both methods. With
the kernel method, we set γ = 5×10−5 and used overlapping sequences of events
that were 16 hours in length. If the weight calculated for an unattributed event
was less than 1 × 10−5, then the event remained unattributed. If both methods
returned the same user id, then we set the id of the unattributed event to the
inferred id. If the methods did not agree, then the event remained unattributed.

To evaluate this procedure, we compared performance to our two network
engineers. We randomly selected 100 unattributed events and applied our attri-
bution procedure. We provided the same events to both experts, who indepen-
dently attributed the events. They then resolved any differences to produce a
single set of attributed events. Our procedure agreed with the experts on 99 of
the 100 events. The disagreement involved an ambiguous event from a multi-user
machine that belonged either to the end of one user’s session or the beginning
of another’s.

Applying this procedure to all of the events, we were able to infer attribution
for 65% of the previously unattributed events. About 28.6% of the events in
the collection remained unattributable, but 82% of these originated from 25
hosts running automated processes. Those remaining were ambiguous events
from clients with multiple, concurrent users.

3.5 The Need for Meta-Events

Early on, we noticed that users initiating certain simple actions produced an
inordinate number of information-use events. Executing a find command on a
large, shared file system is one example. We also found that software automat-
ically updating files on clients or servers often accounted for most of a user’s
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Table 4. Scenarios and Their Descriptions

Scenario Description

s1 Employee who gathers technical information about aviation and aero-
nautics, topics that are outside the scope of the employee’s duties.

s2 System administrator who obtains financial information, such as internal
reports, disclosure statements, labor rates, and the like.

s3 Disgruntled employee who is to leave the company and gathers a large
amount of widely varying documents containing sensitive, proprietary
information.

s4 Employee who collects a large volume of information about knowledge

management, which is unrelated to the employee’s duties.
s5 Employee who gathers software relating to aviation from a proprietary,

internal repository.

“browsing” activity (e.g., software updating a public calendar from a personal
calendar). While the information-use events of these sequences are interesting
themselves, we did not want the number of events in a sequence to skew certain
types of analyses.

As a result, we grouped certain sequences of directory and file events into
meta-events. We segmented a user’s events when there was a change in protocol,
a change in the server’s ip address, or when the separation between two events
was greater than ten seconds. Over each segment, we computed the number of
events in the segment, the rate at which the events occurred, and the percentage
of list events in the segment. If a segment was longer than 20 events and the
frequency of events was greater than two per second, then we labeled the segment
as a meta-event. If the percentage of list events within the segment was greater
than 90%, then we further labeled the segment as being the result of a find
command. In the database, we used a unique identifier to label events of a meta-
event. An additional field indicated whether the meta-event was the result of a
list or find command. Although we determined these thresholds empirically, we
found that this heuristic method worked well for our events.

3.6 Scenario Development and Execution

The data set described so far consists of activity for 3, 983 users. It has proven
invaluable for analysis and the development of detectors. However, it contains
no known malicious activity, which limits our ability to evaluate our approach.

In response, a red team constructed fifteen scenarios inspired by public cases
that involved the gathering of illicit information by individuals such as Aldrich
Ames, Ryan Anderson, and Brian Regan. Domain experts reviewed the scenarios
and adapted them to the network we monitored. Once approved, the red team
executed the five scenarios listed in Table 4 during normal network operation.
Three of the five scenarios were executed by two different members of the red
team (i.e., s2, s3, and s4) in an effort to assess the role that individual person-
ality might play in scenario execution and detection. This resulted in a total of
eight scenario executions. (We did not execute the remaining scenarios because
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Fig. 1. elicit’s architecture.

members of the red team were assigned to other projects; we plan to use the
scenarios in future work.)

The red team used their legitimate accounts to execute scenarios during
normal network operation, which let the trusted agent process the “benign” and
scenario data together. Using the red team’s detailed logs of their activity and
demarcation events sent via e-mail, the trusted agent isolated and then removed
the scenario events from the benign collection of information-use events. This
let the trusted agent insert and remove individual scenarios at will.

The members of the red team were knowledgeable about insider activity and
investigations. They were given the scenario and its translation, and instructed
to achieve an objective (i.e., steal information) in a manner consistent with the
scenario and its insider. These instructions identified specific topics, documents,
and systems (e.g., financial), but their actions were not tightly scripted. Members
were not told how to achieve their objective or the time over which an attack
must occur. To make inserting and removing the scenario events possible, they
were told not to intermix benign and malicious activity between demarcation
events. While not all insider attacks follow this profile, many do because insiders
often take advantage of windows of opportunity.

The research team and the red team worked in isolation with the trusted
agent mediating interactions. The teams did not share domain experts, and the
research team had no insight into the development, execution, collection, and
insertion of scenarios and their events until after the completion of elicit’s de-
velopment and evaluation. Although the teams worked in isolation, in retrospect,
they independently profiled some of the same insiders, such as Regan, Ames, and
Hanssen. However, the red team also profiled insiders that the research team did
not, such as Ryan Anderson and Ana Montes. The research team did not know
how the red team would translate the scenarios (e.g., that aviation would be a
topic of interest).

4 The elicit System

elicit is a research prototype designed to help analysts investigate malicious
insiders. As shown in Fig. 1, it consists of four main components: a database of
events and contextual information, a set of detectors, a Bayesian network, and
a user interface.
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As described previously, we processed packet data from the network and
stored the resulting events in a relational database system. Based on our anal-
ysis of these events, consultation with experts, and public information about
past cases, we designed and built detectors that, over specified periods of time,
examine events in the database and return a set of alerts. A Bayesian inference
network uses the alerts as evidence and computes, for each user, an overall threat
score. Finally, elicit presents the users and their scores to an analyst through
the user interface.

4.1 Detectors for Anomalous Activity

To date, we have developed 76 detectors that examine events for volumetric
anomalies, suspicious behavior, and evasive behavior. We define each detector
along three dimensions: the activity’s type, its characteristics, and its context.
The type of activity can be browsing, searching, downloading, and printing.
Each detector examines characteristics of the activity, such as when the activity
occurred, where it occurred, and how (or to what extent) it occurred. Finally,
each detector evaluates activity in context with past activity, with the activity
of organizational or professional peers, or with the activity of the peers in some
social network.

Each detector works by taking as arguments a time period and a set of param-
eters, by examining each person’s activity during the time period and relevant
contextual information, and by issuing an alert, provided that the user’s activity
meets the detector’s criteria for reporting. Some detectors use only the user’s
events that occurred during the specified period of time, while others analyze
events of other types, of other users, or from other periods of time. Some detec-
tors alert when users engage in specific activities, such as conducting searches
using inappropriate terms. Others alert when some aspect of user activity is ex-
cessive or anomalous, which means that some measure of that activity falls into
a rejection region.

We based each detector on a hypothesis about the activities in which ma-
licious insiders might engage. We formed and supported each hypothesis with
analysis of the events in our data collection, with advice from domain experts,
with information from public cases, or with some combination thereof. As one
might expect, we could not always support a hypothesis because one or more of
the other sources refuted it. For example, if we found evidence of suspicious ac-
tivity, but an expert advised that it was not indicative of malicious insiders, then
a detector for that activity would be of little use, at least for the environment we
monitored. It is important to note that detectors suitable for one environment
may not be suitable for another.

Since we had no traces of real insider attacks and no models of insider behav-
ior for the network we monitored, we consulted with three domain experts. For
several years, they have performed technical analysis of active insider cases in-
volving the theft or misuse of information. They were familiar with the network
we monitored and its users. They advised us on the activities in which insiders
might engage and helped determine the parameters of detectors.
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To implement detectors, we used a variety of methods, including hand-coded
rules, and parametric and nonparametric density estimation. We also exploited
social networks. To set their parameters, we described and presented to our
experts the observed activity in both textual and graphical form using events
from the database and histograms of the activity of individual users and groups
of users (e.g., with the same job title). The experts came to a consensus about
what they considered excessive or anomalous, and we used this information to
set the parameters and thresholds of the detectors. We make no claims that these
are optimal settings, but based on observation and expert feedback, they seem
to be reasonable estimates. Unfortunately, due to space restrictions, we cannot
describe all 76 detectors, so we describe a representative few.

Sensitive Search Terms. Insiders use search engines to find, evaluate, and collect
information. Most organizations can define a set of sensitive terms that appear
in documents, but that would be inappropriate for use as query terms. The term
proprietary is an example. With the help of domain experts, we constructed a
list of thirteen such search terms, and if someone’s query contains one of the
terms on this list, then the detector issues an alert.

Printing to a Non-Local Printer. It is important to note that in the organiza-
tions of interest to us, printing a document is often the only way of removing
information. Computers are on networks isolated from the Internet and have
their usb ports and external storage systems disabled. Evidence from publicly-
available documents suggests that insiders collect and print documents on topics
outside the scope of their duties. Presumably, the insider’s co-workers would rec-
ognize if the topic of a printed document were inappropriate. Consequently, to
avoid suspicion, an insider may print inappropriate documents to a distant or
non-local printer.

In the environment we monitored, an overwhelming majority of users printed
to their local printer, as shown in Fig. 2. The graphs show the number of doc-
uments printed plotted against the distance to the printer when the user prints
from his or her office. The distance is the number of floors from an individual’s
office to the printer.
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Fig. 2. Number of documents printed plotted against the distance of the printer from
the user’s office. (a) The fully scaled graph. (b) A version scaled to emphasize the bars
right of the mode.
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As shown in Fig. 2a, over a six-week period, users printed 34, 279 documents,
with 32, 475 of these documents sent to printers on the same floor as their office.
In Fig. 2b, which contains a scaled version to emphasize the bars to the right of
the mode, notice the small spike at a distance of four. Five users, all from the
same department, were responsible for 22 of these 25 print jobs. We are unsure
why these users would print from their offices to a printer four floors above.
They may have been printing to a printer in a lab.

Writing a detector for non-local prints was quite easy. In the database, we
stored each user’s office location, each printer’s location, and for each document
printed, the user who issued the print command, the location where the user
issued the print command, and the printer to which the user sent the document.
The detector alerts if the user prints from his or her office to a printer on a
different floor.

Anomalous Browsing Activity. To take into account a user’s past activity, we im-
plemented a number of detectors that alert when anomalous events occur. These
include the size of a document printed, the number of documents downloaded,
the number of search queries issued, and the like. One such detector alerts when
a user browses an anomalous number of documents in a 15-minute period.

In the environment we monitored, in 15-minute periods, people often browsed
few documents and rarely browsed many documents. Using a χ2 test of goodness
of fit, we determined that the number of documents browsed in 15-minute periods
follows a folded-normal distribution [8].

For a given time period and user, the detector calculates the maximum num-
ber of browses for the user during a 15-minute interval within the time period.
The detector then retrieves the number of browses during each 15-minute period
going back a certain number of days from the start of the time period. It then
estimates the parameters of a folded-normal distribution [8], the mean, the stan-
dard deviation, and the number of nonzero 15-minute intervals. Then, using the
density function, it computes the probability that the user would conduct the
maximum number of browses observed in the time period. If the probability is
below a threshold, which we determined with the help of domain experts, then
the detector alerts. We also implemented a version that uses a kernel-density
estimator [9].

Retrieving Documents Outside of One’s Social Network. Insiders often steal in-
formation to which they have access, but that is outside the scope of their duties,
and thus, is not closely associated with them—closely associated in terms of topic
and the information’s owners and originators at individual and organizational
levels. If the organization discovers that its information has been compromised,
then this disassociation makes it more difficult to determine the leak’s source.

For each individual of the organization, we automatically built a social net-
work based on the people in their department, whom they e-mailed, and with
whom they worked on projects. With nodes corresponding to people, we used
unweighted directed arcs to represent these associations. We then examined the
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extent to which individuals retrieved documents from the public directories of
people inside and outside their social network.

Over a period of five months, we tallied the number of documents that each
user retrieved during each 15-minute interval. We then expressed this count as
the percentage of documents retrieved from others who were outside the user’s
social network. Subject-matter experts selected as a threshold the percentage
that they considered excessive. We built a detector that, when invoked, con-
structs a social network for each user and counts the number of documents
retrieved from outside this network. If the count surpasses the threshold, then
the detector alerts.

4.2 Bayesian Network for Ranking

For a given user, elicit’s 76 detectors may alert in any combination. Presently,
if a detector alerts, it simply reports true, so there are 276 possible combinations
of alerts. It is unlikely that any analyst would be able to understand such a set
of alerts for all but the smallest of organizations or groups of users.

We wanted elicit to rank each user of the organization using a threat score.
Naturally, each user’s score would be based on the alerts that his or her activity
produced. The simplest method would be to use as a score the total number
of alerts, but alerts are not equally predictive of insider behavior, and benign
users may engage in many of the same activities as does an insider. We consid-
ered asking experts to weight the alerts based on their correlation to malicious
behavior, but this brought up the issue of how to combine weights, especially
when detectors do not alert and there is an absence of evidence. There also may
be other “external” events that cause benign users to change their behavior. For
example, a task force created in response to a crisis may produce anomalous
activity, such as searching, browsing, and printing during odd hours.

To cope with these challenges, with the help of domain experts, we designed
and constructed a Bayesian inference network [10]. Our early designs, while
accurate, were too complex, especially when we considered the task of eliciting
probabilities from analysts. We settled on a three-level, tree-structured network
(see Fig. 1) consisting of Boolean random variables.

The first level consists of one node for the random variable MaliciousInsider.
The second and third levels correspond to the activities in which a malicious
insider will or will not engage (e.g., using inappropriate search terms) and the
detectors of those activities that will or will not alert, respectively. There are 76
nodes in both the second and third levels. The nodes of the second level represent
the probability that a user will or will not engage in some activity given that
he is and is not a malicious insider. The nodes of the third level represent the
probability that a detector will or will not detect such activity given that it does
and does not occur on the network.

For nodes of the top two levels, we elicited probabilities from three domain
experts, mentioned previously. We conducted several sessions and elicited the
conditional probabilities for all of the activities given that the insider was and
was not malicious.
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For the nodes of the bottom, detector level, we determined the conditional
probabilities using either theoretical arguments or empirical methods. For these
nodes, we set the probability of detection given that the activity occurs to 1.
(Strictly speaking, these probabilities are not 1, and we discuss this issue further
in Sect. 6.) To determine the probabilities of false alarm for the detectors, we
first assumed the events in our collection are normal. For detectors based on,
say, parametric estimators, we set the false-alarm rate based on the threshold
that the detector uses to report anomalous events.

For example, a detector that alerts when a user prints an anomalously large
number of documents uses an estimator based on a folded-normal distribution
[8]. Our experts indicated that they would consider suspicious any number of jobs
occurring with a probability of less than .015. Since the number of print jobs for
a given user follows a folded-normal distribution and the events in our database
are normal, the detector’s false-alarm rate is also .015. For other detectors, we
determined their false-alarm rate empirically, by calculation or by applying them
and counting the number of alarms. For example, consider detectors that alert
when activity occurs outside of normal working hours. Since we assumed that
the events in our collection are normal, the false-alarm rate for such detectors is
the proportion of events that occur outside of normal working hours.

When elicit invokes the detectors for a given user, for the detectors that
alert, it sets to true the value of the nodes of the third level corresponding to those
detectors. It then propagates this instantiated evidence throughout the network,
thereby calculating a probability distribution for the node MaliciousInsider. We
use P (MaliciousInsider) as the user’s threat score, and if it is above a specified
decision threshold (e.g., .5), then elicit issues an alert for that user. We store
all of this information in the database.

5 Evaluation

When we were ready to evaluate elicit, the trusted agent selected a scenario at
random, inserted it into the database of events, and told us the month into which
it was inserted. We ran elicit over the entire month and notified the trusted
agent, who scored elicit’s performance and removed the scenario’s events from
the database. The trusted agent then reported to the research team elicit’s
rank and threat score for each day the scenario’s insider was active.

We evaluated elicit on eight scenario executions, and in Table 5, we present
results for six of these executions. The table contains the member of the red team
who executed the scenario, the day of activity, the number of preceding days of
inactivity, the number of sessions per day, and the insider’s threat score and
relative ranking. Using a decision threshold of .5, we counted as a detection any
insider scoring above this threshold. We present results for only six executions
because when we analyzed the scenarios after completing elicit’s evaluation, we
noticed that for two of the executions (s3 and s4), an unintentional error in the
settings of a user’s web proxy routed the scenario’s traffic around our sensors.
We removed these two executions from further consideration.
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Table 5. elicit’s Performance on Six Scenario Executions

Active Preceding Days
Scenario Executor Day of Inactivity Sessions Score Rank Detect

s1 rt4 1 – 1 .994 1
√

2 1 1 .999 1
√

3 2 1 .999 1
√

4 3 1 .994 1
√

s2 rt1 1 – 3 .999 1
√

s2 rt4 1 – 1 .033 341
2 1 2 .999 1

√

3 3 1 .999 1
√

s3 rt2 1 – 1 .999 1
√

2 1 1 .999 1
√

3 1 1 .999 1
√

4 1 1 .984 2
√

s4 rt2 1 – 2 .999 2
√

2 3 1 .999 1
√

3 1 1 .992 2
√

4 1 3 .999 1
√

5 2 1 .587 20
√

s5 rt2 1 – 3 .071 149
2 1 5 .037 238

As one can see, elicit detected insiders on 16 of the 19 days they were active.
Notice that rt1 executed scenario s2 in one day, whereas rt4 executed it on
three days spanning one week. With the exception of s5 and rt4’s execution of
s2, elicit detected the insiders on their first day of activity. elicit performed
poorly on scenario s5, and we discuss the reason for this in the next section.

6 Analysis and Discussion

After completing our evaluation of elicit, the red team provided information
about the scenarios and their events, which we analyzed along with the threat
scores for individual users and for all users. In Fig. 3, we present the threat
scores for three users for the month of March. The scores of most users were
similar to those pictured in Figs. 3a and 3b, which indicate little or no malicious
activity. However, less typical are the scores in Fig. 3c, which spike above .9
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Fig. 3. Threat scores for three users for March
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Fig. 4. Threat scores for all users for three days. (a) 462 users for 3/4/05, a Friday.
(b) 523 users for 3/7/05, a Monday. (c) 36 users for 3/27/05, a Sunday.

on five different days. In an operational environment, elicit would flag and
analysts would further investigate individuals with such scores.

In Fig. 4, we show the threat scores for all users on three different days. The
scores in Figs. 4a and 4b are from work days, and those in Fig. 4c are from a
Sunday (when there are fewer users). These plots are typical and illustrate how
elicit scores users on different days and how few users obtain relatively high
scores. During work days, elicit scored an average of 1, 548 users, with 552
users scoring above 0. Of these, 23 users scored above .5.

Using .5 as the decision threshold, we estimated elicit’s false-positive rate.
Although our collection contains activity for 3, 938 distinct users, during March
and June, when the red team executed the scenarios, there were 1, 548 active
users on average. For these same months, not including the insiders, an average
of 23 users scored above .5. Consequently, elicit’s average false-positive rate
is .015. Since elicit detected insiders on 16 of the 19 days they were active,
its detection rate is .84. We constructed an roc curve by varying the decision
threshold and then approximated the area under the curve using the trapezoid
rule, which yielded an area of .92.

We have conducted a thorough analysis of the scenarios and their events, but
here, we can present only the key insights. We first examined why elicit failed
to detect scenario s5, which required the member of the red team to retrieve
proprietary software from an internal repository. Although our sensors captured
the activity, we had not developed detectors to monitor that specific server. Put
simply, our detectors were focused on documents rather than on software. We
will address this issue in future work.

elicit did not detect the first day of activity of rt4’s execution of s2. It
consisted of the browsing of a specific financial system and relatively few events
(135). As before, we had no detectors tailored expressly for activity involving
the financial system. On the first day of the scenario, two detectors alerted
on rt4’s browsing activity, but these alerts were insufficient to produce a high
threat score. However, on the second and third days, there were more events (202
and 306, respectively) and a broader range of activity. This activity produced
substantially more alerts—22 on the second day and 20 on the third—and higher
threat scores, resulting in detections on those days.
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We were concerned that a large number of events might have produced high
threat scores. Indeed, of the scenarios we detected, all were in the 75th percentile
in terms of the total number of daily events (i.e., accounting for both benign and
anomalous activity). However, when we examined the correlation between the
number of events and the threat scores for all users scoring above the decision
threshold in the months of March and June, the coefficients were .026 and −.023,
respectively. Consequently, we concluded that elicit’s detections were not due
to the number of events in the scenario executions.

We were also concerned that a red-team member’s decision to run all of his or
her sessions in a single day (versus one session per day) might have affected the
daily threat scores. To investigate, for the days involving multiple sessions, we
inserted each session individually and ran elicit. elicit did not detect the first
session of the second day of rt4’s execution of s2, and it did not detect the first
session of the first day of rt1’s execution of s2. On the other hand, evaluating
elicit on the individual sessions did not result in any new detections. Ultimately,
we concluded that a person’s decision to execute multiple sessions in a single day
did not significantly affect performance.

As for elicit’s successes, our analysis suggests that based on the scenarios
and their executions, the right detectors were alerting on the right activities. Sce-
narios s1, s2, and s4 involved employees who gathered information unrelated to
their duties. Detectors for anomalous volumes of searching and browsing alerted,
as did detectors indicating that there were queries atypical for the user.

As for elicit’s false positives, we found no single consistent pattern of alerts
that resulted in false alarms. However, individuals in non-technical administra-
tive roles, representing 10% of the user population, accounted for 39% of all false
alarms. Our analysis suggests that administrative staff engaged in many of the
activities that elicit should detect: large amounts of activity and a breadth of
activity spanning organizational boundaries.

Regarding the red-team member’s incorrect proxy settings, in practice, insid-
ers could attempt to route traffic around sensors. However, this requires specific,
technical knowledge of sensor placement and traffic routing. The insider may ob-
tain little feedback about the success of these countermeasures, and attempting
such changes could increase the chance of being detected. In the organizations
of interest to us, such changes could be a serious violation regardless of intent.
Nonetheless, this illustrates the importance of complementary host-based ap-
proaches, which could make such attacks more difficult to launch.

Our results are significantly better than the current state of practice, which
involves matching ad hoc patterns, auditing randomly-selected individuals, and
auditing based solely on the volume of user activity. When interpreting our
results, it is important to keep in mind that this task is quite different than
detecting intrusions, which focuses on rule breaking.

False positives are always a concern, but the number of entities (i.e., users)
that elicit processes per day is orders of magnitude smaller than the number
of entities (e.g., connections) that intrusion-detection systems process in much
shorter periods of time. Once elicit reports a detection, a user’s historical ac-
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tivity and contextual information play a critical role in subsequent analysis.
Such information is largely absent when investigating potential external intru-
sions. Indeed, elicit’s interface provides enough information and context about
individuals that analysts were able to quickly absolve false positives.

When interpreting the number of false positives, one must also take into
account the cost of false negatives, which is substantially higher than that of
other detection tasks. At stake is national security. We have not conducted a
formal cost analysis. However, anecdotal evidence suggests that, because of the
damage these insiders cause, organizations interested in detecting violations of
need-to-know are willing to tolerate false positives at much higher rates than
with other applications.

Two other important distinctions of this task are the rate of attack and the
time over which attacks occur. Rather than occurring in milliseconds (in the case
of worms), attacks by insiders who violate need-to-know occur over days, months,
and even decades, in the case of Robert Hanssen. Publicly-available information
suggests that insider activity occurs in bursts, like other types of attacks, but
insider activity is spread over days and months. Consequently, analysts may have
to investigate, say, ten false-positives per day, rather than thousands per hour.

As mentioned previously, the probabilities of detection are, strictly speaking,
not 1. For example, we did have three days when our network sensors were
down, there is a small percentage of events that we could not attribute to users,
and there may have been packets that the sensors did not capture. These events
certainly affect a detector’s probability of detection in some way, but it is unclear
whether there is a practical procedure for taking into account all of these factors
and then estimating the probabilities. We suspect that most changes would be
small and that many would uniformly change the probabilities of detection. This
will affect the absolute probabilities, but not the relative probabilities, and we
are most interested in a user’s rank.

Eliciting probabilities from domain experts proved challenging. They had
little difficulty specifying numeric thresholds and conditional probabilities for
rules. However, for the detectors based on statistical methods, it was difficult
to communicate how the detectors worked in a non-technical manner. Graphical
aids and phrasing questions using percentages rather than probabilities helped,
but even though all of the experts agreed on the importance of modeling indi-
vidual activity, we still had trouble eliciting probabilistic cutoffs and conditional
probabilities based on these cutoffs. Ultimately, it was easier for us to present
and for experts to specify a number rather than a probability or a percentage.

We have attempted to convey that detecting malicious insiders is challenging
and different than detecting intruders. One key difference is the availability of
contextual information for insiders, information that one rarely has for intrud-
ers. With the help of such information, organizations must understand how its
users access and manipulate information. To accomplish this, we must attribute
actions to users, rather than to ip addresses, which in turn, raises important
issues of privacy, especially for researchers.
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Complicating matters is the lack of public data sets and information regard-
ing insider behavior and activity. One solution is to engineer data sets. There
have been attempts to do so for intrusion detection, mostly notably the mit

Lincoln Labs data set [11], but no similar data set exists for insider threat.
Engineered data sets are not without problems, such as guaranteeing that the
malicious activity is in correct proportion to the benign activity and that the
benign activity is truly representative of the target environment [12]. Our col-
lection of scenarios and information-use events is an attempt to address these
concerns for insiders who violate need-to-know.

7 Related Work

We provide only a brief review of related work, but see Chapter 25 of Bishop [13]
for a more complete survey. Denning [14] referred to specific instances of such
activity as leakage and inference by legitimate users: Leakage involves a legiti-
mate user leaking or exfiltrating information. Inference is inferring information
based on queries to a database or a search engine.

One early attempt to address the problem of misuse was ides [15], which
used statistical profiles of user behavior to detect masqueraders by observing
departures from established patterns. (It also applied rules to identify specific
intrusions.) Another is unicorn [16], which examined audit records for misuse by
forming profiles using counts over multiple time scales and by applying rules to
transform profiles into anomalies, into likely misuse events, and then into alarms.
In contrast, elicit is geared more toward the misuse of user-level privilege and
has a broader notion of context, such as social networks and job descriptions.

Several studies have examined methods of detecting masqueraders from com-
mand sequences [5, 17, 18]. The main points of departure between this work and
ours are, we are monitoring network traffic; we are interested in legitimate users
acting as themselves, but in a manner that is uncharacteristic and inappropri-
ate; finally, to improve detection, we bring to bear contextual information about
users and the information they access.

The research most similar to ours is that of Maybury et al. [19]. Workshop
participants built a database of 11 million events collected over a period of 3
months from 18 hosts of a 31-node intranet with 75 users. There is overlap with
our work, but they examined different sources of information, approaches, and
insider profiles.

8 Concluding Remarks

In this paper, we described the construction and evaluation of elicit, a sys-
tem designed to help analysts investigate insider threats. We are interested in
malicious insiders who operate within their privileges, but outside the scope of
their duties. This is quite different from intrusion detection. We stressed the im-
portance of contextual information and of tracking how individuals access and
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manipulate information. One rarely has this information for detecting intruders,
but it is critical for detecting insiders.
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