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Abstract

We consider online learning where the tar-
get concept can change over time. Previ-
ous work on expert prediction algorithms has
bounded the worst-case performance on any
subsequence of the training data relative to
the performance of the best expert. However,
because these “experts” may be difficult to
implement, we take a more general approach
and bound performance relative to the ac-
tual performance of any online learner on this
single subsequence. We present the additive
expert ensemble algorithm AddExp, a new,
general method for using any online learner
for drifting concepts. We adapt techniques
for analyzing expert prediction algorithms to
prove mistake and loss bounds for a discrete
and a continuous version of AddExp. Fi-
nally, we present pruning methods and em-
pirical results for data sets with concept drift.

1. Introduction

We consider the online learning scenario where an al-
gorithm is presented with a series of labeled examples,
S = {xt, yt}, for t = 1, 2, . . . , T . At each time step, the
algorithm outputs a class prediction, ŷt, for the given
feature vector xt, then updates its hypothesis based on
the true class yt. In the discrete case, yt and ŷt are in
a finite set of classes Y , and under the mistake bound
model (Littlestone, 1988), one bounds the number of
mistakes an algorithm makes on some target concept.
In the continuous case, yt, ŷt ∈ [0, 1], and one bounds
the maximum loss suffered by the algorithm – we fo-
cus on the absolute loss function L(ŷt, yt) = |ŷt − yt|.
In addition, we allow for the target concept to change
over time.

Certain expert prediction algorithms (Littlestone &
Warmuth, 1994; Herbster & Warmuth, 1998) pro-
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vide theoretical performance guarantees under concept
drift. These algorithms predict based on the advice
of several prediction strategies, called experts. When
trained on a series of different concepts, these algo-
rithms perform “almost as well” as the best expert
on each concept – the assumption being that different
experts perform best on different concepts. In prac-
tice, however, such algorithms can be difficult to im-
plement. If the experts are fixed prediction strategies,
then they are limited to those that one can delineate
prior to any training. Alternatively, if the experts are
learning algorithms, then they must be able to adapt
to concept drift individually, since all are trained over
the entire example series.

In this paper, we take a different, more adaptive ap-
proach: we bound our algorithm’s performance over
changing concepts, not relative to the performance of
any abstract expert, but relative to the actual perfor-
mance of an online learner trained on each concept
individually. Our algorithm, called Additive Expert
(AddExp), maintains what we call an additive expert

ensemble. It is similar to expert prediction algorithms,
except that new experts can be added during the on-
line learning process. We adapt techniques from Little-
stone and Warmuth (1994) and Freund and Schapire
(1997) to prove performance bounds under the mis-
take bound and online loss models. The primary re-
sult of the paper is, when trained on a series of chang-
ing concepts, AddExp makes O(m) mistakes on any
concept, where m is the number of mistakes that the
base learner makes when trained only on this single
concept. Similarly for the continuous case, AddExp
will suffer a loss of O(`) on any concept, where ` is
the loss of the base learner when trained only on this
single concept. We present pruning methods so the al-
gorithm can be efficient on complex data sets. Finally,
we present empirical results.

2. Background and Related Work

Much work on expert prediction can be traced back to
the Weighted Majority (WM) algorithm (Littlestone
& Warmuth, 1994) and Vovk’s (1990) work on aggre-
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gating strategies. Cesa-Bianchi et al. (1997) propose
a general algorithm for randomized predictions and
prove lower bounds on the net loss of any expert pre-
diction algorithm. Freund and Schapire (1997) pro-
pose the Hedge algorithm, which uses these meth-
ods for an online-allocation problem. Haussler et al.
(1998) and Vovk (1998) generalize previous results to
general-case loss functions. Separately, several algo-
rithms have been proposed to deal with concept drift
(e.g., Kolter & Maloof, 2003; Schlimmer & Granger,
1986; Street & Kim, 2001; Widmer & Kubat, 1996).
There has also been theoretical analysis (e.g., Helm-
bold & Long, 1994).

Expert prediction algorithms have been applied specif-
ically to the problem of concept drift. A variant of
the original WM algorithm, WML (Littlestone & War-
muth, 1994) adds mechanisms that allow new experts
to become dominant in constant time. Blum (1997)
implemented a version of WM for a calendar schedul-
ing task that exhibits concept drift. Herbster and War-
muth (1998) generalize the loss bounds of such expert
predictions algorithms to general-case loss functions,
and Monteleoni and Jaakkola (2004) have recently ex-
tended this work by allowing the algorithm to adjust
parameters during online learning to improve perfor-
mance. Bousquet and Warmuth (2003) analyze a spe-
cial case where the best experts come from a small
subset of the ensemble.

Additive expert ensembles were introduced by Kolter
and Maloof (2003) with the Dynamic Weighted Major-
ity (DWM) algorithm, which shares many similarities
with the AddExp algorithm we present in this paper.
DWM was shown to perform well in situations with
concept drift, but the evidence for this performance
was entirely empirical, and in fact DWM’s weighting
scheme makes it impossible to bound performance in
the worst case. DWM handles only discrete classes,
can become unstable in noisy settings, and has a prun-
ing mechanism that provides no guarantee as to the
number of experts created. The AddExp algorithm,
as we will describe, allows for theoretical analysis, gen-
eralizes to regression tasks, provides pruning mecha-
nisms that cap the number of experts, and achieves
better empirical results than DWM.

3. AddExp for Discrete Classes

In this section, we present the AddExp.D algorithm
(see Figure 1) for handling discrete class predictions.
As its concept description, AddExp.D maintains an
ensemble of predictive models, referred to as experts,
each with an associated weight. Experts use the same
algorithm for training and prediction, but are created

Algorithm AddExp.D({x, y}T , β, γ)
Parameters:

{x, y}T : training data with class y ∈ Y
β ∈ [0, 1]: factor for decreasing weights
γ ∈ [0, 1]: factor for new expert weight

Initialization:
1. Set the initial number of experts N1 = 1.
2. Set the initial expert weight w1,1 = 1.

For t = 1, 2, . . . , T :
1. Get expert predictions ξt,1, ..., ξt,Nt

∈ Y
2. Output prediction:

ŷt = argmaxc∈Y

Nt
∑

i=1

wt,i[c = ξt,i]

3. Update expert weights:

wt+1,i = wt,iβ
[yt 6=ξt,i]

4. If ŷt 6= yt then add a new expert:

Nt+1 = Nt + 1

wt+1,Nt+1
= γ

Nt
∑

i=1

wt,i

5. Train each expert on example xt, yt.

Figure 1. AddExp for discrete class predictions.

at different time steps. The performance element of
the algorithm uses a weighted vote of all the experts.
For each possible classification, the algorithm sums the
weights of all the experts predicting that classification,
and predicts the classification with the greatest weight.
The learning element of the algorithm first predicts
the classification of the training example. The weights
of all the experts that misclassified the example are
decreased by a multiplicative constant β. If the overall
prediction was incorrect, a new expert is added to the
ensemble with weight equal to the total weight of the
ensemble times some constant γ. Finally, all experts
are trained on the example.

If trained on a large amount of data, AddExp.D has
the potential to create a large number of experts. How-
ever, since this does not affect the theoretical mistake
or loss bounds of the algorithm, we will not deal with
this issue until Section 5, where we discuss pruning.

3.1. Analysis

Here we analyze the performance of AddExp.D
within the mistake bound model (Littlestone, 1988) by
adapting the methods used by Littlestone and War-
muth (1994) to analyze the WM algorithm. As this
is a worst-case analysis, we allow for an adversary to
choose, at any time step, whether any given expert
is going to make a mistake. This may seem odd be-
cause, after all, not only do these experts all employ
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the same learning algorithm, they are also all trained
from the same data stream – the only difference be-
ing that some experts are trained on a larger subset
of the stream than other experts. However, if we con-
sider training noise and the sampling effects present in
real-world problems, it becomes difficult to conclude
anything about the performance of the different ex-
perts. Therefore we perform this analysis in the most
general case.

We denote the total weight of the ensemble at time
step t to be Wt =

∑Nt

i=0 wt,i. We also let Mt be
the number of mistakes that AddExp.D has made
through time steps 1, 2, . . . , t− 1. The bound rests on
the fact that the total weight of the ensemble decreases
exponentially with the number of mistakes.

Theorem 3.1 For any time steps t1 < t2, if we stip-

ulate that β + 2γ < 1, then the number of mistakes

that AddExp.D will make between time steps t1 and

t2 can be bounded by

Mt2 − Mt1 ≤
log(Wt1/Wt2)

log(2/(1 + β + 2γ))
.

Proof AddExp.D operates by multiplying the
weights of the experts that predicted incorrectly by
β. If we assume that a mistake is made at time step
t then we know that at least 1/2 of the weight in the
ensemble predicted incorrectly. In addition, a new ex-
pert will be added with weight γWt. So we can bound
the weight with

Wt+1 ≤
1

2
Wt +

β

2
Wt + γWt =

1 + β + 2γ

2
Wt .

Applying this function recursively leads to:

Wt2 ≤
1 + β + 2γ

2

Mt2
−Mt1

Wt1 .

Taking the logarithm and rearranging terms gives the
desired bound, which will hold since the requirement
that β + 2γ < 1 ensures that (1 + β + 2γ)/2 < 1. ¤

Now suppose that the algorithm makes a mistake at
time t1, and so a new expert is added. The initial
weight of this expert will be γWt1 . Let m be the num-
ber of mistakes made by the new expert by time step
t2. The weight of the expert is multiplied by β for
each mistake it makes, so its weight at time t2 will be
γWt1β

m. Since the total weight of the ensemble must
be greater than that of any individual member,

Wt2 ≥ γWt1β
m . (1)

Corollary 3.2 For any time steps, t1 < t2, if Add-

Exp.D makes a mistake at time t1 – and therefore

adds a new expert to the pool – then the number of

mistakes that AddExp.D makes between time steps

t1 and t2 can be bounded by

Mt2 − Mt1 ≤
m log(1/β) + log(1/γ)

log(2/(1 + β + 2γ))
,

where m is the number of mistakes that the new expert

makes in this time frame.

Proof The bound is obtained by substituting (1) into
the result of Theorem 3.1. ¤

Finally, we show how this analysis applies to concept
drift.

Corollary 3.3 Let S1,S2, . . . ,Sk be any arbitrary

partitioning of the input sequence S into k subse-

quences, such that AddExp.D makes a mistake on the

first example of each subsequence. Then for each Si,

AddExp.D makes no more than

min

{

|Si|,
mi log(1/β) + log(1/γ)

log(2/(1 + β + 2γ))

}

mistakes, where mi is the number of mistakes made by

the base learner when trained only on Si.

Proof The follows follows by applying Corollary 3.2 to
each subsequence Si. ¤

It is important to note that the requirement that Add-
Exp.D makes a mistake on the first example of each
subsequence is not a practical limitation, since sub-
sequences need not correspond directly to concepts.
Consider the subsequence that begins whenever Add-
Exp.D makes its first mistake on some concept, and
ends at the last example of this concept. We can bound
the performance of AddExp.D on this subsequence
relative to the performance of the base learner. And
since we know that AddExp.D made no mistakes on
the concept before the subsequence begins, this also
serves as a bound for the performance of AddExp.D
over the entire concept. Additionally, while this bound
is most applicable to scenarios of sudden drift, it is by
no means limited to these situations. It only requires
that at some point during online training, a new ex-
pert will perform better than experts trained on “old”
data, which can also happen in situations of gradual
drift.

However, there is another difficulty when considering
the theoretical performance of AddExp.D. It can be
shown that the coefficient on the m term in Corollary
3.2 can never be reduced lower than 2, which can be
a significant problem if, for example, the base learner
makes a mistake 20% of the time.
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Theorem 3.4 For any β, γ ∈ [0, 1],

m log(1/β) + log(1/γ)

log(2/(1 + β + 2γ))
≥ 2m .

Proof (Sketch) The coefficient of m is minimized as
γ → 0, so it will always be greater than

log(1/β)

log(2/(1 + β))
.

It can be shown that ln(1/x) ≥ 2(1 − x)/(1 + x) for
x ∈ [0, 1]. Using this inequality to bound the numer-
ator, and the inequality ln(1 + x) ≤ x to bound the
denominator gives the desired result. This can also be
verified by plotting the function for β ∈ [0, 1]. ¤

A similar situation occurs in the analysis of the original
WM algorithm. The problem is that since only half the
weight of the ensemble needs to predict incorrectly in
order to make a mistake, an adversary will be able
to let the experts conspire to drive up the number of
global mistakes. For this reason, we shift our focus to
a continuous version of the algorithm analyzed under
the online loss model. In the case of binary classes,
it is possible to use randomized prediction to obtain a
bound on the expected number of mistakes equivalent
to the loss bound.

4. AddExp for Continuous Classes

In this section, we present and analyze the AddExp.C
algorithm (see Figure 2) for predicting values in the in-
terval [0,1]. The general operation of the AddExp.C
algorithm is the same as that of AddExp.D except
that class predictions – both the overall prediction of
AddExp.C and the predictions of each expert – are in
[0, 1] rather than in a discrete set of classes Y . This ne-
cessitates other changes to the algorithm. Rather than
predicting with a weighted majority vote, AddExp.C
predicts the sum of all expert predictions, weighted by
their relative expert weight. When updating weights,
the algorithm uses the rule

wt+1,i = wt,iβ
|ξt,i−yt| . (2)

As with other expert prediction algorithms, the follow-
ing analysis also holds for a more general update func-
tion wt+1,i = wt,iUβ(|ξt,i − yt|), for any Uβ : [0, 1] →
[0, 1], where βr ≤ Uβ(r) ≤ 1 − (1 − β)r for β ≥ 0 and
r ∈ [0, 1]. Whereas we previously added a new mem-
ber to the ensemble whenever the global prediction
was incorrect, we now add a new member whenever
the global loss of the algorithm on that time step is
greater than some threshold τ ∈ [0, 1]. The weight of

Algorithm AddExp.C({x, y}T , β, γ, τ)
Parameters:

{x, y}T : training data with class y ∈ [0, 1]
β ∈ [0, 1]: factor for decreasing weights
γ ∈ [0, 1]: factor for new expert weight
τ ∈ [0, 1]: loss required to add a new expert

Initialization:
1. Set the initial number of experts N1 = 1.
2. Set the initial expert weight w1,1 = 1.

For t = 1, 2, . . . , T :
1. Get expert predictions ξt,1, . . . , ξt,Nt

∈ [0, 1]
2. Output prediction:

ŷt =

∑Nt

i=1 wt,iξt,i
∑Nt

i=1 wt,i

3. Suffer loss |ŷt − yt|
4. Update expert weights:

wt+1,i = wt,iβ
|ξt,i−yt|

5. If |ŷt − yt| ≥ τ add a new expert:

Nt+1 = Nt + 1

wt+1,Nt+1
= γ

Nt
∑

i=1

wt,i|ξt,i − yt|

6. Train each expert on example xt, yt.

Figure 2. AddExp for continuous class predictions.

this new expert is calculated by:

wt+1,Nt+1
= γ

Nt
∑

i=1

wt,i|ξt,i − yt| . (3)

4.1. Analysis

We adapt techniques from Littlestone and Warmuth
(1994) and Freund and Schapire (1997) to analyze
AddExp.C. Again we use the notation Wt to denote
the total weight of the expert pool at time t. We let
Lt refer to the total absolute loss suffered by the algo-
rithm before time t, with Lt =

∑t−1
i=1 |ŷi − yi|.

Theorem 4.1 For any time steps t1 < t2, if we stip-

ulate that β + γ < 1, then the absolute loss of Add-

Exp.C between time steps t1 and t2 can be bounded

by

Lt2 − Lt1 ≤
ln(Wt1/Wt2)

1 − β − γ
.

Proof It can be shown by a convexity argument (e.g.,
Littlestone & Warmuth, 1994, Lemma 5.1) that

βr ≤ 1 − (1 − β)r (4)

for β ≥ 0 and r ∈ [0, 1]. At each time step AddExp.C
updates the weights according to (2) and may add a
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new expert with weight determined by (3). Combining
these equations with (4) gives

Wt+1 ≤

Nt
∑

i=0

wt,iβ
|ξt,i−yt| + γ

Nt
∑

i=1

wt,i|ξt,i − yt|

≤

Nt
∑

i=0

wt,i(1 − (1 − β − γ)|ξt,i − yt|)

≤ Wt(1 − (1 − β − γ)|ŷ − y|) .

Applying repeatedly for t = t1, . . . , t2 − 1 gives

Wt2 ≤ Wt1

t2−1
∏

t=t1

(1 − (1 − β − γ)|ŷt − yt|) .

The theorem follows by taking the natural logarithm
and using the inequality ln(1 + x) ≤ x. ¤

Now suppose that the loss at time step t1 is greater
than τ , so a new expert is added with initial weight
γ
∑Nt

i=1 wt,i|ξt,i − yt| = γ|ŷt − yt|Wt. Let ` be the loss
that the new expert has suffered by time t2. At time
step t2 the weight of this expert will be β`γ|ŷt−yt|Wt.
And since the total weight of the ensemble must be
greater than any individual member, we have

Wt2 ≥ β`γ|ŷt1 − ytt
|Wt1 . (5)

We use this to prove corollaries corresponding to 3.2
and 3.3 for the continuous case.

Corollary 4.2 For any time steps, t1 < t2, if Add-

Exp.C suffers a loss greater than τ at time t1 – and

therefore adds a new expert to the pool – then the loss

suffered by AddExp.C between time steps t1 and t2
can be bounded by

Lt2 − Lt1 ≤
` ln(1/β) + ln(1/γ) + ln(1/τ)

1 − β − γ
,

where ` is the loss suffered by the new expert in this

time frame.

Proof The bound is obtained immediately by substi-
tuting (5) into the result of Theorem 4.1 and noticing
that |ŷt1 − yt1 | ≥ τ . ¤

Corollary 4.3 Let S1,S2, . . . ,Sk be any arbitrary

partitioning of the input sequence S such that at the

first example in each subsequence, AddExp.C suffers

loss greater than τ . Then for each subsequence Si,

AddExp.C suffers loss no greater than

min

{

|Si|,
`i ln(1/β) + ln(1/γ) + ln(1/τ)

1 − β − γ

}

,

where `i is the loss suffered by the base learner when

trained only on Si.

Proof The bound is obtained by applying Corollary
4.2 to each partition Si. ¤

As with the discrete case, the requirement that Add-
Exp.C suffer loss greater than τ at the first exam-
ple of each subsequence is not a significant practical
limitation. It is slightly more difficult in the contin-
uous case, since AddExp.C may continuously suffer
loss less than τ , and never add a new expert. How-
ever, since τ can be made arbitrary small, with only
a log(1/τ) penalty, this “extra” loss suffered can be
reduced arbitrarily close to zero.

4.2. Optimizing Parameters

In this section, we present methods for choosing pa-
rameters β and γ based on previous knowledge of the
problem. Specifically, if we have an upper bound ˜̀ on
the loss of a given expert, then we can choose β and
γ so as to minimize the loss bound for AddExp.C.
However, due to the nature of the bound, it is very
difficult to optimize the parameters precisely, and so
approximations are used. Well-chosen values for β and
γ result in analysis that is remarkably similar to the
analysis of WM-style algorithms.

We make use of the following lemma from Freund and
Schapire (1997), slightly rewritten:

Lemma 4.4 (Freund & Schapire, 1997) Suppose

0 ≤ A ≤ Ã and 0 ≤ B ≤ B̃. Let α = 1 +
√

2B̃/Ã.

Then
A ln α + B

1 − (1/α)
≤ A + B +

√

2ÃB̃ .

Empirical optimization of the loss bound suggests that
the bound reaches a minimum when γ = β/`. Using
this conjecture we can choose values for β and γ such
that the resulting equation is an instance of Lemma
4.4. Specifically, we choose the values

β =
˜̀

(˜̀+ 1)g(˜̀)
and γ =

1

(˜̀+ 1)g(˜̀)
, (6)

where

g(˜̀) = 1 +

√

2(ln∗(˜̀+ 1) + ln(1/τ))/(˜̀+ 1) .1 (7)

Substituting these values into the bound from Corol-
lary 4.2 satisfies the conditions of Lemma 4.4 with

1Here we define the function

ln∗(x) = x ln x − (x − 1) ln(x − 1).

We use the name ln∗ since this function is asymptotically
similar to the ln function, and can be bounded by ln∗

x ≤

ln x + 1 for x > 1. The difference is that ln∗

x approaches
0 as x approaches 1, so the bound is stronger.
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Ã = ˜̀+ 1, B̃ = ln∗(˜̀+ 1) + ln(1/τ) and α = g(˜̀).
So we can obtain the new loss bound,

Lt2 − Lt1 ≤ ` + 1 + ln∗(` + 1) + ln(1/τ) +
√

2(˜̀+ 1)(ln∗(˜̀+ 1) + ln(1/τ)) .

If we choose ˜̀ and τ such that ˜̀≥ 1/τ , then the net
loss of AddExp.C over this interval, Lt2 −Lt1 − `, is

O
(√

˜̀ln ˜̀
)

. This bears a strong resemblance to the

bound proven by Cesa-Bianchi et al. (1997) and others
for the worst-case net loss of WM-style algorithms:

O
(√

l̃ ln n
)

, where n in the number of experts.

5. Pruning

Until now, we have ignored issues of efficiency. Add-
Exp can potentially add a new expert every time step,
leading to inefficiency as the length of the input grows.
In this section, we present two pruning techniques, one
that has theoretical guarantees but which may be im-
practical, and one that performs well in practice but
which has no theoretical guarantees.

Ideally, pruning removes unnecessary experts from the
ensemble while keeping the best experts. If done cor-
rectly, it will not affect the mistake or loss bounds
proven in Sections 3 and 4. These bounds depended
only on the fact that the weight of the ensemble de-
creases over time, and pruning does not interfere with
this. If we are concerned with the bound between time
steps t1 and t2, the only requirement is that we do not
remove the best expert during this time period.

Pruning Method 1 (Oldest First) When a new ex-

pert is added to the ensemble, if the number of experts

is greater than some constant K, remove the oldest ex-

pert before adding the new member.

Theorem 5.1 Let S1,S2, . . . ,Sk be a partitioning of

the input series as discussed in Corollaries 3.3 and

4.3. Suppose that we have an upper bound m̃ or ˜̀ on

the maximum mistakes or loss of the base learner on

any partition. Then AddExp trained on S, using the

Oldest First pruning method with suitably chosen K,

will have the same mistake or loss bound as AddExp

without pruning.

Proof For the discrete case, let

K =
m̃ log(1/β) + log(1/γ)

log(2/(1 + β + 2γ))
.

By Corollary 3.3, AddExp.D will make no more than
K mistakes when trained on any partition Si. Since
a new expert is added only when a mistake is made,

this also serves as a bound for the number of experts
that can be created when trained on one partition.
Therefore, if more experts than K are created, the
oldest expert must span more than one partition, and
we can remove it, since the bound depends only on the
expert added at the beginning of each partition.

In the continuous case we select

K =
˜̀ln(1/β) + ln(1/γ) + ln(1/τ)

1 − β − γ
·
1

τ
,

as this is a worst-case bound on the number of new
experts that can be created. After this, the proof par-
allels that of the discrete case. ¤

Unfortunately, this method may be difficult to use in
practice since we may not be able to obtain ˜̀ or m̃.
Even if we could, the number of experts required might
still be prohibitively large. Additionally, if we select a
K that is too small, Oldest First may seriously degrade
the performance of AddExp since, when trained on a
static concept, it is precisely the oldest expert that is
usually the most valuable. For this reason, we intro-
duce a more practical pruning method.

Pruning Method 2 (Weakest First) When a new

expert is added to the ensemble, if the number of ex-

perts is greater than a constant K, remove the expert

with the lowest weight before adding the new member.

Weakest First performs well in practice, because it re-
moves the worst performing experts. However, it is
difficult to determine performance in the worst case
since an adversary can always degrade the initial per-
formance of the optimal expert, such that its weight
falls below other experts. We must also be careful
in choosing K in conjunction with γ, as we do not
want new experts to be pruned before they are given a
chance to learn. However, as we show in the next sec-
tion, Weakest First works well in practice, even with
small values of K.

6. Empirical Results

To provide empirical support for AddExp, we eval-
uated it on the STAGGER Concepts (Schlimmer &
Granger, 1986), a standard benchmark for concept
drift, and on classification and regression tasks involv-
ing a drifting hyperplane. For the STAGGER Con-
cepts, each example consists of three attributes, color

∈ {green, blue, red}, shape ∈ {triangle, circle, rectan-

gle}, and size ∈ {small, medium, large}, and a class
label y ∈ {+,−}. Training lasts for 120 time steps,
and consists of three target concepts that last 40 time
steps each: (1) color = red ∧ size = small, (2) color

= green ∨ shape = circle, and (3) size = medium ∨
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Figure 3. Predictive accuracy on the STAGGER concepts.

size = large. At each time step, the learner is trained
on one example, and tested on 100 examples generated
randomly according to the current concept.

To test performance on a larger problem involving
noise and more gradual drift, and to evaluate Add-
Exp on a regression task, we created a synthetic prob-
lem using a drifting hyperplane. Feature vectors con-
sist of ten variables, x ∈ [0, 1]10, each with a uni-
form distribution over this range. Training lasts for
2000 time steps, with 4 target concepts lasting for 500
examples each. At every time step, the learners are
trained on one example and tested on 100. For the
classification task, y ∈ {+,−}, and the general tar-
get concept is (xi + xi+1 + xi+2)/3 > 0.5, with i = 1,
2, 4, and 7 for each of the 4 concepts, respectively.
We also introduced 10% random class noise into the
training data. The regression task is identical except
that y ∈ [0, 1] and we eliminated the threshold, i.e.,
y = (xi + xi+1 + xi+2)/3 with i = 1, 2, 4, and 7 for
each of the 4 concepts. Instead of class noise, we in-
troduced a ±0.1 random variate to y, clipping y if it
was not in [0, 1].

We evaluated AddExp.D on the STAGGER and hy-
perplane classification tasks, and AddExp.C on the
hyperplane regression task. Based on pilot studies, we
chose parameters of β = 0.5, γ = 0.1 for STAGGER,
β = 0.5, γ = 0.01 for the hyperplane classification task,
and β = 0.5, γ = 0.1, τ = 0.05 for hyperplane regres-
sion. We used an incremental version of naive Bayes as
the base learner for AddExp.D and an online batch
version of least squares regression as the base learner
for AddExp.C. For the sake of comparison, we eval-
uated the performance of the base learner over the en-
tire data set, and on each concept individually. These
serve as worst-case and best-case comparisons, respec-
tively, since the base learners have no mechanisms for
adjusting to concept drift, and conversely, the base
learners trained on each concept individually are not
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Figure 4. Predictive accuracy on the hyperplane problem.
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Figure 5. Average absolute loss on a continuous version of
the hyperplane problem.

hindered by previous data. We also evaluated DWM
on the classification tasks – using naive Bayes as a
base learner, β = 0.5, and allowing new experts to be
added every time step, mirroring AddExp.D. For all
simulations, we averaged accuracies over 50 runs, and
calculated 95% confidence intervals.

Figure 3 shows the performance of AddExp.D on the
STAGGER data set. All algorithms except DWM per-
form virtually the same on the first concept, since no
drift takes place. Once the target concept changes,
naive Bayes cannot adapt quickly to the new concept,
but AddExp.D is able to quickly converge to perfor-
mance similar to naive Bayes trained only on the new
target concept. Figure 4 shows a similar result for the
hyperplane classification task. AddExp.D converges
quickly to all concepts. However, it converges slowest
to the second concept, the most gradual of the three
drifts since only one relevant variable changes, and x2

and x3 are relevant for both concepts. After the drift
occurs, AddExp.D’s performance is initially better
than naive Bayes’, because of the “old” experts and
the overlap of the two concepts. Convergence is slower
because it takes longer for the new experts to “out-
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weigh” the old ones. This shows AddExp.D balanc-
ing the predictions of its old and new experts, which
is important for real-world applications, since it is not
known in advance whether drift will be gradual or sud-
den. Finally, Figure 5 shows similar behavior for Ad-
dExp.C on the hyperplane regression task.

DWM performs slightly worse than AddExp.D on
the first STAGGER concept (Figure 3), but outper-
forms it on the last. This is because DWM gives more
weight to a new expert – set initially to the highest
weight in the ensemble – which can accelerate conver-
gence, but it can also let new experts become dominant
too quickly, thereby decreasing performance. This is
particularly harmful in noisy scenarios, as shown by
Figure 4. To deal with this problem, DWM uses a
parameter such that new experts can only be added
periodically. However, this prevents DWM from rec-
ognizing drift during this period, and does not alle-
viate the problem entirely. Therefore, we argue that
AddExp is a more robust solution to this problem,
since the γ parameter allows one to precisely dictate
the weight of new experts, and the bounds we have
proven show that new experts can never dominate en-
tirely if an older expert performs better.

By the end of the 2000 training examples on the hyper-
plane classification task, AddExp.D created an aver-
age of 385 experts, causing the algorithm to be much
slower than naive Bayes. This is especially a problem
in noisy domains, since new experts will continually be
created when the algorithm misclassifies noisy exam-
ples. Fortunately, the Weakest First method of prun-
ing works remarkably well on this task. The learn-
ing curves for AddExp.D with a maximum of 10
or 20 experts are virtually indistinguishable from the
unpruned learning curve. The average accuracy over
all time steps for unpruned AddExp.D is 87.34% ±
0.06, while Weakest First achieves average accuracies
of 87.27±0.06 for K = 20 and 87.08±0.06 for K = 10.

7. Concluding Remarks

We presented the additive expert ensemble algorithm
AddExp, a general method for using any online
learner to handle concept drift. We proved mistake
and loss bounds on a subsequence of the training data
relative to the actual performance of the base learner,
the first theoretical analysis of this type. We proposed
two pruning methods that limit the number of experts
in the ensemble, and evaluated the performance of
the algorithm on two synthetic data sets. In future
work, we would like to conduct more empirical analy-
sis, analyze additive expert ensembles under other loss
functions, and investigate methods for dynamically ad-

justing the parameters of the algorithm during online
learning to maximize performance.
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