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Abstract

This report briefly reviewsresearchprogresson
vision throughlearning conductedasa collabo-
rative effort of theGMU Machine Learning and
Inference Laboratory and the UMD Computer
Vision Laboratory. The report covers wodone
on the following projects:

(1)The Multi-level Image Samplingand Trans-
formation (MIST) methodology for learning
image descriptions and transformations

(2) Applying the MIST methodologyto seman-
tic analysis of outdoor scenes

(3) Recognizingobjectsin a cluttered environ-
ment

(4) Learning in navigation

(5) Intelligent interfaces: Learning in the
RADIUS environment

(6) Learning space configuration and homing

(7) Learning object functionality

Our work aims at ultimately developing vision
systemsthat apply a range of symbolic and
parametric machine learningethodsto solving
vision problems.

TThis research was supportby the AdvancedResearch
Projects Agency under grants F49620-92-J-0549%nd
F49620-95-1-0462administeredoy the Air Force Of-

1 Introduction

The underlying motivation of our researchis

that vision systems neddarning capabilitiesfor

handling problems for which algorithmic solu-
tions areunknown or difficult to obtain. Learn-
ing capabilities will also make vision systems
more easily adaptableto different vision prob-
lems,and more flexible and robust in handling
the variability of perceptual conditions
[Michalski et al., 1994]. During the reported
period we have studiedthe application of sym-
bolic, neural net and multistrategy learning
methodsto such problemsasoutdoor scenein-

terpretation, object recognition icluttered envi-

ronments,learning in navigation, homing, and
intelligent interfacesthat exploit experiencein

the RADIUS environment.

The following sectionglescribespecific projects
and results obtaineduring the reportedperiod.
Detailedresultsare presentedn separatepapers
in theseProceedinggAloimonos & Fermueller,
1996; Duric et al., 1996; Maloof et al., 1996;
and Michalski et al., 1996].

2 The Multi-level Image Sampling and
Transformation Methodology (MIST)

Recentresearchon the application of machine
learning to computewision hasbeenconcerned
with a wide range of problemsand explored a
variety of learning methods. For examp@rim-

fice of Scientific Research. The development of machingon Horn and Poggio [1994] conductedtheo-

learning systems used this researchwas supportedn
part by the AdvancedResearchProjects Agency under
grantNo. N00014-91-J-1854administeredby the Of-
fice of Naval Researchin part by the Office of Naval
Research under grant NO0014-91-J-1351din part by
the National Science Foundation under grants IRI-
9020266, CDA-9310297 and CDA-9309725.

retical and experimentalstudiesof neural net-
work learning. They usedradial basisfunctions
and applied their method to face recognition.

Houzelle, StratFua and Fischler[1994] consid-
ered the problem of automatically selecting a
feature extraction algorithm and its parameters
on the basis of past experience with similar tasks.



Bhanu [1994] applied reinforcement learning

and geneticalgorithms to selectedproblems of

computer vision, such as learnitige parameters
of the Phoenix segmentation algorithie used
Gabor waveletsas image features.Allen, Boult,

Kender, and Nayar [1994] describedwork on

learning object descriptionsin eigenspaceslhe

objects are representedon a 20-dimensional
manifold and recognition is done by matching
new instancesof object descriptionsto these
manifolds.

Hanson, Risemanand Weiss [1994] described
the Schemalearning system.Their systemcon-
sists of learning programs and image under-
standing routines. Fischler and Bolles [1994]

of multistep learning of image descriptioresgch
step produces a transformed image t&vesas
input to the next level transformatioihe proc-
essstopswhenthe obtainedannotatedsymbolic
image (ASI) is sufficiently close to the target
image (representinga labeling of pixels ac-
cording to the visual concepts to be learned).

MIST is an extension and generalizationof an
earlier multilevel logical templatesethodology,
originally proposedby Michalski [1972, 1973],
developed further and experimentedwith by
Channic[1988], and subsequentlyby Bala and
Pachowicz (see, e.g., [Bala et al., 1994]).

The MIST methodology works in two modes:

described work on applying learning from expe-Learning mode and Interpretation mode The

rience to natural object recognition. Shafer,
Kanade and Ikeuchi [1994] considered the
problem of learning through observation. In

their project, a robot learns a task by obsenang

human in action. Binford, Levitt and Langley
[1994] explored problems of learning object
models using observation and background
knowledge. Rosenfeld, Rivlin and Khuller
[1994] investigated problems of learning to
navigatea graph. It has also been proposedto

learning mode is executed in fophasegwhich
may be repeatediteratively): LP1—Description
space generation and background knowledge
formulation, LP2—Event generation, LP3—
Learning or refinementl.P4—Imageinterpreta-
tion and evaluation.

The result of learning is sequenceof operators
(rulesets, transformationgreadescriptionsetc.)
that produce a desirable performance.An ex-

apply learning in the RADIUS environment, e.g.,planationof the abovestepsand further details

[Gerson and Wo0d1994; Stratand Climenson,
1994; Bailey et al., 1994; Sargentet al., 1994;
Chellappa et al., 1993].

Theseefforts demonstratea wide consensusin

the vision community that vision systemsneed
learning capabilities.An open problem is what
type of learning method or approachis most
effective for what types of vision problems.In

this context, a significant part of our research
has been concernedwith developinga general
methodology, called multilevel image sampling
and transformation (MIST) for applying ma-

chine learning methodsto vision problems,and
investigating theirperformance.The purposeof

this methodology is terovide a researchemith

an environment in which diverse machine
learning methodsand approachescan be flexi-

bly appliedto a wide range of vision problems.
The methodologymakesit easyto comparethe

performance ofdifferent methodsand to incor-

porate previously developed tools.

Specifically, MIST aims at learning image de-
scriptions or other knowledge (e.gmage trans-
formations, site modeling operators,etc.) from
training examples(e.g., labeled image samples,
object examples,parametersettings,etc.). In
general, the learning process candmme in one
global step or in a sequence sieps.In the case

about this methodologyare in [Michalski et al.,
1996].

To interpret a newmage, the systemappliesthe
learned transformationsto the image. Labels
correspondingto the original image areaspro-
vide an image interpretation. Learning errare
computed by comparing the target labeling
(madeby the trainer) with the learnedlabeling
(produced by the system).

Advantagesof this methodology include the
easeof applying and testing diverse learning
methodsand approachesn a uniform manner,
the potential for implementing very advanced
and complex learning processesthe possibility
for parallel image learning and interpretation,
tand he easeof testing the accuracy and per-
formance of the methods.

Most of the experimentswith an earlier version
of the methodology have been concernedwith
learning decision rules characterizing image-
face classesfrom surface samples. The rules
were determined using the inductive learning
program AQ15c [Wnek et al1995] andrepre-
sentedin VL1 (Variable-ValuedLogic System
1; [Michalski, 1973]). These rules served as
“logical templates” that were matched against



window-size samplesof the surfaceto classify
the image, e.g., [Michalski et. al., 1993].

and testing image samples (differgudrts of the
same window in the given image for training and
testing, different windows in the same image, and

The initial implementation of MIST incorporates different images).

the following learning systems:

() Inductive rule learning program AQ15c
[Michalski et al., 1986; Wnek et al., 1995].

(i) Data-drivenconstructiveinductive learning
program AQ17-DCI, capableof automati-
cally generatingnew attributes more rele-
vant fto the given task [Bloedorn and
Michalski, to appear].

(iif) Hybrid learning system,AQ-NN, that com-
bines symbolic rule learning with neunaét
learning[Bala et al., 1994].

(iv) Backpropagationneural net learning sys-
tem, NN [Zurada, 1992].

The initial version ofthe methodologyhasbeen
applied to the following vision tasks:

(A) A semanticinterpretationof natural scenes
[Michalski et al. 1996] and

(B) Detecting objectsin a cluttered environ-
ment that belong to a specific concegrss,e.qg.,
detecting blasting caps X-ray images[Maloof
et al., 1996].

The next section describesbriefly the applica-
tion of MIST to natural scene interpretation.

3 Applying MIST Methodology to Semantic
Interpretation of Outdoor Scenes

One of the highly challenging open vision
problemsis how to interpret natural scenesand
recognize natural objects [Fischler and Strat,
1988; Strat and Fischler, 1991]. The MIST
methodology seems to offer a novel appro&zh
theseproblems. In this project, we addressthe
problem of learning to semantically interpret
outdoor sceneausing severallearning methods.
In the experimentswe useda collection of im-
ages representing selected mountain scenes
around Aspen, Colorado (Figure 1).

The inputto the learning processwasa training
image in which selectedexamplesof the visual
conceptsto be learned have been labeled by a

trainer, for example, trees, sky, ground, road, an

grass. The description space was defined in
terms ofattributescharacterizingimage samples
in some predefined window.

We experimentedwith different setsof initial
attributes, different imageslifferent sizesof the
training areas,and different sourcesof training

Figure 1: A typical image in the Aspen
collection.

In the experimentswe usedthe four previously

mentioned learning systems: AQ15c, AQ17-DClI,

AQ-NN, and NN. The resultsindicated an ad-
vantageof the AQ-NN learning system over
other systemsin terms of both faster learning
and recognitiontimes and higher predictive ac-
curacy. Table 1 gives a brief summary of the
prediction rate of the descriptionsobtained by
purely symbolic learning, AQ15c, and multis-
trategy learning program AQ-NN.

Learning Prediction
System Accuracy
Single Majority
event voting
Symbolic 89% 96%
learning: AQ15c
Multistrategy 91% 99%
learning: AQ-NN

It is also worth noting that the constructivein-
duction method, AQ17-DCI, produced several
new attributes that improved the performance
ccuracy and simplified concept descriptions,
r example, the differences betwete intensi-
ties of different colors, the color of maximum
intensity, and the sum of intensities. Thus, the
program found transformationsthat in other
methodswould needto be given to the system
explicitly. For more information about these
experiments see [Michalski et al., 1996].



4  Recognizing objects in a cluttered envi-
ronment

This project is conducted jointly by Maloof,
Duric, and Michalski and detailed in [Maloof
and Michalski,1995c]. Here we summarizethe
main ideas. The goal of this researchis to de-
velop a method for identifyin@ given objectin
a cluttered environment.

The learning methodology used here employs
ideas of MIST (and closelparallelsMichalski’s
[1973], Channic’s [1988], and Bala’s [1993]).
The method proceedsin four steps:(1) Region
of Interest(ROI) Determination,(2) Event Ex-
traction, (3) DescriptionLearning,and (4) Rec-
ognition. The image set used for theseexperi-
ments are x-ray imagesof luggage containing
blasting caps. Images were acquired by x-
raying luggage containing blasting caps and
varying amountsof clutter (e.g., shoes,clothes,

object, the length of the object’s perimeter,the
major and minor axesof an ellipsefitted to the
object, and compactness.

Thus, eachexampleof a blastingcap or a non-
blasting cap consistedf a classlabel and either
real or integer valuesfor eachof the computed
attributes. Experiments were conducted using
three learning methodsand a testing methodol-
ogy of 100 iterationsof 2-fold crossvalidation
[Weiss and Kulikowski, 1992]. For these ex-
periments, the learning methods were AQ15c
[Wnek et al.,1995], the Quickprop implementa-
tion of a backpropagation neural network
[Fahlman,1988], and k-nearestneighbor [Weiss
and Kulikowski, 1992].

These methods were compared using average
predictive accuracy,averagelearning time, and
average recognition time. In the experiments, the
AQ15c learning program producesignificantly

calculators, bolts, and pens). The luggage was Mtigher recognition accuracythan the neural net
rayed much as it would be in an airport scenariof95% vs. 79%) and learned descriptionsabout

flat in relation to the x-ray sourcbut rotatedin
the plane orthogonalto the x-ray source. The
image set contains 30 images, but 5 were se-
lectedand were of low to moderatecomplexity
in termsof positional variability of the blasting
cap, degree of occlusion, and clutter.

The first step involves finding image regions that

likely contain blastingcaps. Regionswere iso-
lated interactively yielding a set of 53 binary
objects divided into two classes:blasting caps
and non-blasting caps. Once sevdyksting cap
and non-blasting cap objects were extracted
from the images, several features were com-
puted. Thesefeaturesincluded the areaof the

Blasting Caps?‘

two orders of magnitudefaster.It has also out-
performed the k-nearestneighbor method in
terms of prediction accuracy (95% vs. 69%).
The predictive accuracyresultsfor the learning
methods are summarized in Table 1.

Average Predictive
Learning Method Accuracy
AQ15c 95%
Neural Network 79%
k-nn k=1) 69%

Table T Comparative predictive accuracy
for three learning methods.

Figure 2: Example x-ray images of luggage containing blasting caps.



We alsotried a different approachto this prob-
lem, described in [Maloof et al., 1996]The ap-
proach uses attributes that combine intenaityl
shape information.

Shape information is expresseg compactness.
Intensity depend®n both on the blastingcap’s
orientationrelative to the x-ray source,and the
density ofthe blasting cap material. As the an-
gle between the long axis of the blasting eaml
the imagingplane increasesthe compactnes®f
the image increases,while the intensity de-
creases.

Learning is usedto acquirethe relationship be-
tween intensityand compactnes®f blasting cap
images. Recognition proceedsin a bottom-up
and top-down fashion. Low intensity blobs
serve as attention-catching devices for local
searchand model fitting. Thesemodels, which
are alsolearned,are usedin secondaryrecogni-
tion processes.

Future work will involve using more detailed
models, which neetmagesacquiredat a higher
resolution (e.g., for detectingwires attachedto
the blasting cap).

5 Learning in Navigation

A robotic agentoperatingin an unknown and
complex environment may employ a search
strategy of somé&ind to perform a navigational
task such as reaching a givgoal. In the proc-
ess of performing the task, the agean attempt
to discover characteristics of its environmémat
enable it to choosa more efficient searchstrat-
egy for that environment. If thegentis able to
do this, we can say that it has“learned to navi-
gate"—i.e., to improve its navigationglerform-
ance.

The University of Maryland has conductedsic
investigations intahe problem of how an agent
canlearn to improve its goal-finding perform-
ance in a discrete spaagepresentedy a graph.
In particular, severalbasic search strategieson
two different classes of‘'random” graphswere
compared,and it was demonstratedthat infor-
mation collectedduring the traversalof a graph
can be usedto classify the graph, thus allowing
the agent to choose the search strategy best
suited for that graph.

In general, anavigational task involvesfinding
a pathin a given spacethat satisfiesgiven con-

the pathmustterminateat a given point, or at a
point that has given properties;in a traversal
task, the path must passthrough (or close to)
every point of the space.(In both of theseex-
amples,we can also introduce a cost function
and require, e.g., that the path be as shoptoss
sible.) If the “layout” of the spaceis not
known in advance, finding an acceptalide op-
timal) path involves a seargirocess.In general,

there may be many applicable search algorithms,

and their relative performancein finding paths
may depend on the nature of the space.

A navigating agent may hawve perform a navi-
gational task in a given spacerepeatedly,each
time with newconstraints. For example,a goal-
finding agentmay be requiredto find pathsto
many different goals. In order to operate effi-
ciently, such an agent should attengtdiscover
characteristicof the spacein which it is navi-
gating, so that it can use relativedfficient algo-
rithms to searchfor the desiredpaths. If the
agentis able to do this, we can say that it has
“learned to navigate”, in the sensethat it has
learned something about tlspacein which it is
navigatingand can use this information to im-
prove its navigational efficiency.

In [Cucka et al., 1995], we studied this concept
of “learning to navigate” using a goal-finding
taskin a discretespacerepresentedy a graph
embeddedin the plane. We assumedthat the
agentalwaysknows its position in the plane, as
well as the position of thgoal; but sinceit does

not know the structure of the graph, reaching the

goal requires searchWe analyzedseveralalter-

native searchalgorithms and showedthat their

relative performancaeliffers for different classes
of graphs;we also showedhow the agent can

discover (“learn”) which type of graph it is

navigating in by collecting information about
the graph while it is searching for a goal.

Specifically, we studied two classesof graphs,
both constructedby choosing nodesrandomly
in a planar region. In the first class, pairs of
nodes were randomly joined karcs;the second
class were the Delaunay triangulations of the
nodes. Evidently, the arcsof a Delaunaygraph
tend to be shorter, and to vary much lessin
length, than the arcs of a random graph. The
agent can decide which of the two types of
graphsit is navigatingin by histogrammingthe
lengthsof the arcsthat it traverses. We found
that this decisioncan be made quite reliably by
the time the agent has traverseda few dozen

straints (and possibly also minimizes a given cosarcs.

function). For example,in a goal finding task,



The studiesconsideredonly a few simple goal
seeking strategies. Many variations on these
strategiescould also be considered. The agent
might also use methods other than “pure”
search in seeking its goal. For examplemight
try to discover‘landmarks” that could be used
to simplify the processof finding the goal, e.g.,
by moving from landmark to landmark until a
landmark closeto the goal is reached,and then
searching for the goal. Thehoice of landmarks
for usein navigationis anotherinteresting re-
search issue.

The experiments used only two simgassesf
graphs, in which the nodes correspondedto
points randomly chosenin a planar region; the
graphs were either Delaunay triangulations of
these points, or were constructieg joining ran-
domly chosenpairs of the points. Many other
classesof discrete spaces could have been
used—for example, adjacency graphs of
(irregular) tessellations;graphs derived from
models for geographicalprocessesgraphs de-
rived from real citymapsor road networks;and
soon. Evidently, goal finding strategies may
differ widely in performance fodifferent types
of graphs.

The agent’s task was gofihding; asmentioned
above,there are many other types of naviga-
tional tasks. Evidently, different tasks may re-
quire very different strategies;for example,
strategiedor traversal(“patrolling”) would be
very different from goal finding strategies. A
variation on the goal finding taskwould be the
path shortening problem considered in
[Rosenfeld,Rivlin, and Khuller, 1994]: once a
goal hasbeenfound, try to find a shorter path
back to the start node, then a still shorter path
back to the goal, and so on.

The agent was able to move only between
neighboring nodesof the graph; it could not
“lump” or “fly” (or “teleport”). It had an
absoluteposition senseand was also (possibly)

able to sense the directions to the neighbors of

node, or eventhe positions of theseneighbors.
Evidently, the difficulty of a navigationaltaskis
highly dependentot only on the natureof the

space, but also on the capabilities of the agant,

regards both mobility and sensing.

The resultsobtainedalso suggestan interesting
class of questions about robotigentsthat need
to estimate properties of their environments.
The agent was able to discover the tgbegraph
in which it was navigating by measuring the
lengths of the arcsit traversedwhile searching

for a goal, and comparing the histogram of these
arc lengths with the theoretical distribution of
arc lengthsfor Delaunaygraphs. In this way,
the agent “sampled” the arc lengtlistribution;
however, it could notake a random sample,but
only a “connected” sample obtained as it
moved from node to node. Neverthelesswe
found that even small samplescollectedin this
way were sufficient teclassify the graph (as De-
launay or random) with high confidence. We
plan to study the effectivenessof this type of
“robotic sampling” as applied tother typesof
estimation tasks—e.gestimatingthe parameters
of a distribution of quantities defined on the
nodes or arc®f graphsof given classes—iror-
der to better understandthe limitations of esti-
mation processes performed by real robots.

6 Intelligent interfaces: Exploiting experi-
ence in the RADIUS environment

The RADIUS environment(RCDE) has proven
to be a veryuseful tool for building site models
and monitoring changes|[Gerson and Wood,
1994; Sargent eal., 1994; Stratand Climenson,
1994]. However,it may require significant re-
petitive work by the user. A number of groups
have been exploring the possibility of improving
that process.In our researchwe are trying to
exploit the use of prior experienceto help in
new modelingand exploitation casesAs an ex-
ample, an Image Analyst (IA) performs many
functions and choosesmany parameterswhen
accessingand using RCDE in the Quick-Look
mode [Bailey et al., 1994]. An incremental
learning processis being studied as a tool for
creatingan intelligent interface for 1As to sim-
plify and speed up their use of RCDE.

Incrementallearning approacheshave recently
beenusedsuccessfullyfor email routing, news-
group filtering, and calendarscheduling. The
objective of using learning for thesmplications
is to “look over the shoulder” of a user,learn
patterns of behavior, and automate software
functions based on these learned behavidree
type of learning system necessary to suppiusg
classof problemsmust (1) learn over time, (2)

learn quickly, (3) learn with low memory re-

quirements,and (4) learn changing or evolving
concepts. Ware currently developingmethods
and systemsto support this classof problems.
Preliminary experimentshave been reportedin

the domain of computer intrusion detection
[Maloof and Michalski 1995a, b].

One potential application of incrementallearn-
ing for automatingsoftwarefunctions for com-
puter vision systems(e.g., RADIUS, Khoros) is



the Quick-Look concept [Bailey et al., 1994].
With the Quick-Look concept, incremental
learning can be used to prioritize images and
image regions for exploitation by examining
which imagesand image regions the IA selects
and the order in which they aselected. In this
situation, learning could begin with no initial

knowledgeabout a site or image collection, or

could work from a user-provided profile.

A secondapplication would be in the automa-
tion of repetitivetasks. Again, the learning sys-
tem would watchthe IA perform his or her du-
ties, but would look for repeatedsequencesf
menu actions or tasks. For instansepposethe
IA alwaysperforms histogram equalizationand
a measuremenfunction after zooming. After
the system notices and leartidgs pattern,it may
ask the IA if the transition from the zooming
function to the histogram equalizationand the
measurement function can laeitomated. If the
IA indicates positivelythenin the future, when-
everthe IA zooms into an image region, the
systemwould automatically invoke the histo-
gram equalizationand the measurementfunc-
tions. This eliminates theeedfor the IA to se-
lect this function from a menu. Agny time, the
IA will havethe option to either override the
learnedfunction or have the systemforget the
function and relearn another.

7 Learning space configurations for the
purpose of solving the homing problem

Another project in the marriage of vision and
learning in which we have been engagedover
the past year is relatead learning of spacecon-
figurations for the purposeof solving the hom-
ing problem. The problem of homing defined
asthe processthrough which a systempossess-
ing visual perceptioncan go from one place to
another placén someenvironmenton the basis
of visual input. The problem, from a technical
point of view, is equivalentto constructing a
number of visual memoriesof the environment
(knowledge) and then solving the indexing
problem (i.e., the problem of localization — to
what part of the memory doesthe current im-
aged view correspond).

The major difficulty in addressingucha task,a
difficulty that is representativeof the current
state of the art irvision and learning, is that tra-
ditional representationf visual space, being
representation®f distanceor depth or its de-
rivatives — surface normals and curvatureare
characterized by continuity, while machine
learning techniquesare by their definition of a

discretenature operating on symbolic entities.
Thus, it is necessaryto develop representations
of visual spacethat can be storedin data struc-
tures consistingof discretesymbolic entitiesin-
volving a small set of symbols.

A representationof visual space that satisfies
thesecriteria, currently under development,is
termed ordinal spacerepresentationln such a
representation we doot have knowledgeof the
valuesof the depth or range from the image to
surfacesin the environment;our knowledge is
restrictedto ordinal relationshipsbetweendepth

values (greater, smaller or equal). It is possible to

representa retinotopic ordinal map by a set of

“symbolic maps” [Aloimonos and Fermueller,
1996 — in theseProceedings]. A collection of

such mapsrepresentspace. Transformation,or
rather transmutation,of this knowledge into a
compact format, happernbrough the extraction
of featuresfrom theseordinal maps (see above
reference)and the relating betweenthe features
through a formalism termed “spatial logic”,

currently under development.

8 Learning object functionality

For robots, as for humans, recognizitig func-
tions of objectsis often a prerequisiteto inter-
acting with them. Functionality can be defined
as the usability of an obje¢br a particular pur-
pose.

There hasbeenconsiderablerecentresearchon
the problem of recognizing the functionalities of
static objects. The goal of this research basn
to determine the functional capabilitiesof an
object basedon characteristicssuch as shape,
physicsand causation Little attention has been
given to the problem of determiningthe func-
tionality of an object from its motion.

We believe that motion providesstrongindica-
tion of function. In particular, velocity, accel-
eration, andforce of impact resultingfrom mo-
tion strongly constrainpossiblefunction. As in
other approachego functional recognition, the
object (and in our case,its motion) should not
be evaluatedin isolation, but in context. The
context includes the@ature of the agentand the
frame of referenceit uses. A robot can learn
object functionality by watching the object in
use. As an example,the robot might “see” a
knife being usedto slice a loaf of bread and
learn the function of cutting and the context in
which it can be used.



Our research in this aresddresseshe following
problem: How can we usie motion of an ob-
ject, while it is being usedto perform a task, to
determine itsfunction? Our method of answer-
ing this questionis basedon motion analysisof
the given image sequence. The analysisresults
in a few motion descriptors. Thesedescriptors

along, or perpendicularto, a main axis of a
primitive object. The motion can be either a
translation or a rotation.

Given a moving object as seenby an observer,
we would like to infer the function being per-
formed by the object. The objectis given as a

are compared with stored descriptors that arise ioollection of primitives. Irthis examplea knife

known motion-to-function mappings to obtain
function recognition.

Following [Biederman, 1985; Rivlin al., 1995]
we regard objects as composed of primitive
parts. On the mostoarselevel we considerfour

is describedas consistingof two primitives: a
handle (a stick) and a blade g&ip). Given this
model, the systemestimateghe poseof the ob-

ject (asin [Rivlin etal., 1995) and passeghis
information to the motion estimation module.
The model and the resultf the motion estima-

types of primitive parts: sticks, strips, plates, andjon enablethe systemto infer the function that

blobs, which differin the valuesof their relative
dimensions. Wecan then define the four classes
asfollows: If all threedimensionsare aboutthe

same, we have a blob. If two are abth#& same,
and the third is very different, we have twases:
if the two are bigger than the one, we have a

plate, and in the reversecasewe have a stick.

When no twodimensionsare about the samewe

have a strip. For example,a knife blade is a

strip, because ntwo of its dimensionsare simi-

lar.

These primitives can be combined to create
compoundobijects. In [Rivlin etal., 1995] the
different qualitativeways in which theseprimi-

tives can be combinedare described— for ex-

ample, end tend, end to side,end to edge,etc.

In addition to specifying the two attachmemir-
facesparticipatingin the junction of two primi-

tives, we couldalso considerthe anglesat which

they join, and classify the joints as perpendicu-
lar, oblique,tangential,etc. Another refinement
would be to describe qualitatively the positioh
the joint on eachsurface;an attachmentcan be
near the middle, near a side, near a corner, or

near an end of the surfac&Ve can also special-
ize the primitives by adding qualitative features
such as axis shape (straight or curved), cross-
section size (constant or tapered), etc.

Functional recognition is basemh compatibility
with some action requirement. Some basic
“actions” are staticin nature (supporting, con-
taining, etc.),but many actionsinvolve using an
object while itis moving. To illustrate the ways
in which one can interactwith a primitive, con-
sider the actiorof *“cutting” with a sharpstrip
or plate. Here @&harpedgeis interactingwith a
surface. The interactioncan be describedfrom
a kinematic point of view. Thdirection of mo-
tion of the primitive relative to its axis defines
the action — for example,slicing or chopping.
We define a primitive motion to be a motion

is being performed by the object.

The function being performed biye object de-
pends on the object’'s motion the object’s co-
ordinate systermand on its relation to the object
it actson (the “actee”; in [Kise et al., 1993;
Kitahashiet al., 1991] , called the “functant”).
This information gives us the relationship be-
tweenthe direction of motion, the main axis of
the object, and the surface of the actee, thiede
relationshipsdetermine the intended function.
For example,we would expect the motion of a
knife that is beingusedto “stab” to be parallel

to the main axis of the knife, whereas if the knife

is being usedto “chop” we would expect mo-
tion perpendicularto the main axis. In both
cases, the motiois perpendicularto the surface
of the actee. If the knife is being used to
“slice”, we would expect back-and-forth mo-
tion parallel to itsmain axesand also parallel to
the surface of the actee.

In summary, perceiving function from motion
providesan understandingof the way an object
is being usedby an agent. To accomplishthis
we combine information on the shape of the
object, its motion, and its relation to the actee
(the objectit is acting on). Assuminga decom-
position of the object into primitive parts, we
analyzea part’s motion relative to its principal
axes. Primitive motions (translation anotation
relative to the principal axesof the object) are
dominating factors in the analysis. We use a
frame of referencerelative to the actee. Once
such a frame is establishedjt can have major
implications for the functionality of an action.

Severalsequence®f imageshave been usedto
demonstratehe approach;the details are given
in a separatepaperin theseProceedinggDuric
et al., 1996]. In the firsthree sequencesnotion
was usedto discriminate betweenthree cutting
actions: stabbing, choppirend slicing. In still



other sequences [Duric et al., to appear],used
motion informationto differentiate betweentwo

different functionalities of the same object:

scooping and hitting with a shovel, and ham-
mering and tightening with a wrench. These
examplesof double usageare typical instances
of improvisation; motion provides clear infor-

mation for a correctinterpretationof the action
that is taking place.

Figure 4 Flow vectors for tightening with a
wrench.

An exampleof applying our methodto anim-
age sequenci shownin Figures3, and 4. Fig-
ure 3 showsa motion sequenceof a wrench
tightening a screwand Figure 4 showsthe nor-
mal flow field for one frame of the sequence.

Natural extensionsof this work include the
analysisof more complex objects. Complexity
can be expressed in terms of either shapesof
the partsor the way in which the partsare con-
nected. An interestingareais the analysis of
articulatedobjects. The different typesof con-
nections between the parntsnstrainthe possible
relative motions of the partsA pair of pliers or
a pair of scissorsis a simple case,with only a

single articulated connection (one degree of
freedom in the relative motion of the parts).

Work is in progress invhich the methodsdevel-

oped on this project are used to demonstrate
how a robot can learn the functionality of an

object by observingimage sequencesn which

the object is performing actions which accom-
plish its function(s).
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