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Abstract
This report briefly reviews research progress on
vision through learning conducted as a collabo-
rative effort of the GMU Machine Learning and
Inference Laboratory and the UMD Computer
Vision Laboratory. The report covers work done
on the following projects:

 (1)The Multi-level Image Sampling and Trans-
formation (MIST) methodology for learning
image descriptions and transformations

(2) Applying the MIST methodology to seman-
tic analysis of outdoor scenes

(3) Recognizing objects in a cluttered environ-
ment

(4) Learning in navigation
(5) Intelligent interfaces: Learning in the

RADIUS environment
(6) Learning space configuration and homing
(7) Learning object functionality

Our work aims at ultimately developing vision
systems that apply a range of symbolic and
parametric machine learning methods to solving
vision problems.
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1 Introduction
The underlying motivation of our research is
that vision systems need learning capabilities for
handling problems for which algorithmic solu-
tions are unknown or difficult to obtain. Learn-
ing capabilities will also make vision systems
more easily adaptable to different vision prob-
lems, and more flexible and robust in handling
the variability of perceptual conditions
[Michalski et al., 1994]. During the reported
period we have studied the application of sym-
bolic, neural net and multistrategy learning
methods to such problems as outdoor scene in-
terpretation, object recognition in cluttered envi-
ronments, learning in navigation, homing, and
intelligent interfaces that exploit experience in
the RADIUS environment.

The following sections describe specific projects
and results obtained during the reported period.
Detailed results are presented in separate papers
in these Proceedings [Aloimonos & Fermueller,
1996; Duric et al., 1996; Maloof et al., 1996;
and Michalski et al., 1996].

2 The Multi-level Image Sampling and
Transformation Methodology (MIST)

Recent research on the application of machine
learning to computer vision has been concerned
with a wide range of problems and explored a
variety of learning methods. For example, Grim-
son, Horn and Poggio [1994] conducted theo-
retical and experimental studies of neural net-
work learning. They used radial basis functions
and applied their method to face recognition. 

Houzelle, Strat, Fua and Fischler [1994] consid-
ered the problem of automatically selecting a
feature extraction algorithm and its parameters
on the basis of past experience with similar tasks.



Bhanu [1994] applied reinforcement learning
and genetic algorithms to selected problems of
computer vision, such as learning the parameters
of the Phoenix segmentation algorithm. He used
Gabor wavelets as image features. Allen, Boult,
Kender, and Nayar [1994] described work on
learning object descriptions in eigenspaces. The
objects are represented on a 20-dimensional
manifold and recognition is done by matching
new instances of object descriptions to these
manifolds. 

Hanson, Riseman and Weiss [1994] described
the Schema learning system. Their system con-
sists of learning programs and image under-
standing routines. Fischler and Bolles [1994]
described work on applying learning from expe-
rience to natural object recognition. Shafer,
Kanade and Ikeuchi [1994] considered  the
problem of learning through observation. In
their project, a robot learns a task by observing a
human in action. Binford, Levitt and Langley
[1994] explored problems of learning object
models using observation and background
knowledge. Rosenfeld, Rivlin and Khuller
[1994] investigated problems of learning to
navigate a graph. It has also been proposed to
apply learning in the RADIUS environment, e.g.,
[Gerson and Wood, 1994;  Strat and Climenson,
1994; Bailey et al., 1994; Sargent et al., 1994;
Chellappa et al., 1993]. 

These efforts demonstrate a wide consensus in
the vision community that vision systems need
learning capabilities. An open problem is what
type of learning method or approach is most
effective for what types of vision problems. In
this context, a significant part of our research
has been concerned with developing a general
methodology, called multilevel image sampling
and transformation (MIST) for applying ma-
chine learning methods to vision problems, and
investigating their performance. The purpose of
this methodology is to provide a researcher with
an environment in which diverse machine
learning methods and approaches can be flexi-
bly applied to a wide range of vision problems.
The methodology makes it easy to compare the
performance of different methods and to incor-
porate previously developed tools.

Specifically, MIST aims at learning image de-
scriptions or other knowledge (e.g., image trans-
formations, site modeling operators, etc.) from
training examples (e.g., labeled image samples,
object examples, parameter settings, etc.).  In
general, the learning process can be done in one
global step or in a sequence of steps. In the case

of multistep learning of image descriptions, each
step produces a transformed image that serves as
input to the next level transformation. The proc-
ess stops when the obtained annotated symbolic
image (ASI) is sufficiently close to the target
image (representing a labeling of pixels ac-
cording to the visual concepts to be learned).

MIST is an extension and a generalization of an
earlier multilevel logical templates methodology,
originally proposed by Michalski [1972, 1973],
developed further and experimented with by
Channic [1988], and subsequently by Bala and
Pachowicz (see, e.g., [Bala et al., 1994]).

The MIST methodology works in two modes:
Learning mode and Interpretation mode.  The
learning mode is executed in four phases (which
may be repeated iteratively): LP1—Description
space generation and background knowledge
formulation, LP2—Event generation, LP3—
Learning or refinement, LP4—Image interpreta-
tion and evaluation. 

The result of learning is a sequence of operators
(rulesets, transformations, area descriptions, etc.)
that produce a desirable performance. An ex-
planation of the above steps and further details
about this methodology are in [Michalski et al.,
1996].

To interpret a new image, the system applies the
learned transformations to the image. Labels
corresponding to the original image areas pro-
vide an image interpretation. Learning errors are
computed by comparing the target labeling
(made by the trainer) with the learned labeling
(produced by the system).

Advantages of this methodology include the
ease of applying and testing diverse learning
methods and approaches in a uniform manner,
the potential for implementing very advanced
and complex learning processes, the possibility
for parallel image learning and interpretation,
tand he ease of testing the accuracy and per-
formance of the methods.

Most of the experiments with an earlier version
of the methodology have been concerned with
learning decision rules characterizing image sur-
face classes from surface samples.  The rules
were determined using the inductive learning
program AQ15c [Wnek et al., 1995]  and repre-
sented in VL 1 (Variable-Valued Logic System
1; [Michalski, 1973]). These rules served as
“logical templates” that were matched against



window-size samples of the surface to classify
the image, e.g., [Michalski et. al., 1993].

The initial implementation of MIST incorporates
the following learning systems:
 (i) Inductive rule learning program AQ15c

[Michalski et al., 1986; Wnek et al., 1995].
 (ii) Data-driven constructive inductive learning

program AQ17-DCI, capable of automati-
cally generating new attributes more rele-
vant fto the given task [Bloedorn and
Michalski, to appear].

 (iii) Hybrid learning system, AQ-NN, that com-
bines symbolic rule learning with neural net
learning [Bala et al., 1994].

 (iv) Backpropagation neural net learning sys-
tem, NN [Zurada, 1992].

The initial version of the methodology has been
applied to the following vision tasks: 
(A) A semantic interpretation of natural scenes
[Michalski et al. 1996] and
(B) Detecting objects in a cluttered environ-
ment that belong to a specific concept class, e.g.,
detecting blasting caps in X-ray images [Maloof
et al., 1996].

The next section describes briefly the applica-
tion of MIST to natural scene interpretation.

3 Applying MIST Methodology to Semantic
Interpretation of Outdoor Scenes

One of the highly challenging open vision
problems is how to interpret natural scenes and
recognize natural objects [Fischler and Strat,
1988; Strat and Fischler, 1991].  The MIST
methodology seems to offer a novel approach to
these problems. In this project, we address the
problem of learning to semantically interpret
outdoor scenes using several learning methods.
In the experiments, we used a collection of im-
ages representing selected mountain scenes
around Aspen, Colorado (Figure 1).

The input to the learning process was a training
image in which selected examples of the visual
concepts to be learned have been labeled by a
trainer, for example, trees, sky, ground, road, and
grass. The description space was defined in
terms of attributes characterizing image samples
in some predefined window.

We experimented with different sets of initial
attributes, different images, different sizes of the
training areas, and different sources of training

and testing image samples (different parts of the
same window in the given image for training and
testing, different windows in the same image, and
different images).

Figure 1:  A typical image in the Aspen
collection.

In the experiments, we used the four previously
mentioned learning systems: AQ15c, AQ17-DCI,
AQ-NN, and NN.  The results indicated an ad-
vantage of the AQ-NN learning system over
other systems in terms of both faster learning
and recognition times and higher predictive ac-
curacy. Table 1 gives a brief summary of the
prediction rate of the descriptions obtained by
purely symbolic learning, AQ15c, and multis-
trategy learning program AQ-NN.

   Learning
   System

     Prediction
     Accuracy
Single
event

Majority
voting

Symbolic
learning: AQ15c

   89%    96%

Multistrategy
learning: AQ-NN

   91%    99%

It is also worth noting that the constructive in-
duction method, AQ17-DCI, produced several
new attributes that improved the performance
accuracy and simplified concept descriptions,
for example, the differences between the intensi-
ties of different colors, the color of maximum
intensity, and the sum of intensities.  Thus, the
program found transformations that in other
methods would need to be given to the system
explicitly.  For more information about these
experiments see [Michalski et al., 1996].



4 Recognizing objects in a cluttered envi-
ronment

This project is conducted jointly by Maloof,
Duric, and Michalski and detailed in [Maloof
and Michalski, 1995c].  Here we summarize the
main ideas.  The goal of this research is to de-
velop a method for identifying a given object in
a cluttered environment.

The learning methodology used here employs
ideas of MIST (and closely parallels Michalski’s
[1973], Channic’s [1988], and Bala’s [1993]).
The method proceeds in four steps: (1) Region
of Interest (ROI) Determination, (2) Event Ex-
traction, (3) Description Learning, and (4) Rec-
ognition. The image set used for these experi-
ments are x-ray images of luggage containing
blasting caps.  Images were acquired by x-
raying luggage containing blasting caps and
varying amounts of clutter (e.g., shoes, clothes,
calculators, bolts, and pens).  The luggage was x-
rayed much as it would be in an airport scenario:
flat in relation to the x-ray source, but rotated in
the plane orthogonal to the x-ray source.  The
image set contains 30 images, but 5 were se-
lected and were of low to moderate complexity
in terms of positional variability of the blasting
cap, degree of occlusion, and clutter.

The first step involves finding image regions that
likely contain blasting caps.  Regions were iso-
lated interactively yielding a set of 53 binary
objects divided into two classes: blasting caps
and non-blasting caps. Once several blasting cap
and non-blasting cap objects were extracted
from the images, several features were com-
puted.  These features included the area of the

object, the length of the object’s perimeter, the
major and minor axes of an ellipse fitted to the
object, and compactness.

Thus, each example of a blasting cap or a non-
blasting cap consisted of a class label and either
real or integer values for each of the computed
attributes. Experiments were conducted using
three learning methods and a testing methodol-
ogy of 100 iterations of 2-fold cross validation
[Weiss and Kulikowski, 1992].  For these ex-
periments, the learning methods were AQ15c
[Wnek et al., 1995], the Quickprop implementa-
tion of a backpropagation neural network
[Fahlman, 1988], and k-nearest neighbor [Weiss
and Kulikowski, 1992].

These methods were compared using average
predictive accuracy, average learning time, and
average recognition time. In the experiments, the
AQ15c learning program produced significantly
higher recognition accuracy than the neural net
(95% vs. 79%) and learned descriptions about
two orders of magnitude faster. It has also out-
performed the k-nearest neighbor method in
terms of prediction accuracy (95% vs. 69%).
The predictive accuracy results for the learning
methods are summarized in Table 1.

Learning Method
Average Predictive

Accuracy
AQ15c 95%
Neural Network 79%
k-nn (k = 1) 69%

Table 1: Comparative predictive accuracy
for three learning methods.

Blasting Caps

Figure 2:  Example x-ray images of luggage containing blasting caps.



We also tried a different approach to this prob-
lem, described in [Maloof et al., 1996].  The ap-
proach uses attributes that combine intensity and
shape information.

Shape information is expressed by compactness.
Intensity depends on both on the blasting cap’s
orientation relative to the x-ray source, and the
density of the blasting cap material.  As the an-
gle between the long axis of the blasting cap and
the imaging plane increases, the compactness of
the image increases, while the intensity de-
creases.

Learning is used to acquire the relationship be-
tween intensity and compactness of blasting cap
images.  Recognition proceeds in a bottom-up
and top-down fashion.  Low intensity blobs
serve as attention-catching devices for local
search and model fitting.  These models, which
are also learned, are used in secondary recogni-
tion processes. 

Future work will involve using more detailed
models, which need images acquired at a higher
resolution (e.g., for detecting wires attached to
the blasting cap).

5 Learning in Navigation

A robotic agent operating in an unknown and
complex environment may employ a search
strategy of some kind to perform a navigational
task such as reaching a given goal.  In the proc-
ess of performing the task, the agent can attempt
to discover characteristics of its environment that
enable it to choose a more efficient search strat-
egy for that environment.  If the agent is able to
do this, we can say that it has “learned to navi-
gate”—i.e., to improve its navigational perform-
ance.

The University of Maryland has conducted basic
investigations into the problem of how an agent
can learn to improve its goal-finding perform-
ance in a discrete space, represented by a graph.
In particular, several basic search strategies on
two different classes of  “random” graphs were
compared, and it was demonstrated that infor-
mation collected during the traversal of a graph
can be used to classify the graph, thus allowing
the agent to choose the search strategy best
suited for that graph.

In general, a navigational task  involves finding
a path in a given space that satisfies given con-
straints (and possibly also minimizes a given cost
function).  For example, in a goal finding task,

the path must terminate at a given point, or at a
point that has given properties; in a traversal
task, the path must pass through (or close to)
every point of the space. (In both of these ex-
amples, we can also introduce a cost function
and require, e.g., that the path be as short as pos-
sible.)  If the “layout” of the space is not
known in advance, finding an acceptable (or op-
timal) path involves a search process. In general,
there may be many applicable search algorithms,
and their relative performance in finding paths
may depend on the nature of the space.

A navigating agent may have to perform a navi-
gational task in a given space repeatedly, each
time with new constraints.  For example, a goal-
finding agent may be required to find paths to
many different goals. In order to operate effi-
ciently, such an agent should attempt to discover
characteristics of the space in which it is navi-
gating, so that it can use relatively efficient algo-
rithms to search for the desired paths.  If the
agent is able to do this, we can say that it has
“learned to navigate”, in the sense that it has
learned something about the space in which it is
navigating and can use this information to im-
prove its navigational efficiency.

In [Cucka et al., 1995], we studied this concept
of “learning to navigate” using a goal-finding
task in a discrete space, represented by a graph
embedded in the plane.  We assumed that the
agent always knows its position in the plane, as
well as the position of the goal; but since it does
not know the structure of the graph, reaching the
goal requires search.  We analyzed several alter-
native search algorithms and showed that their
relative performance differs for different classes
of graphs; we also showed how the agent can
discover (“learn”) which type of graph it is
navigating in by collecting information about
the graph while it is searching for a goal.

Specifically, we studied two classes of graphs,
both constructed by choosing nodes randomly
in a planar region.  In the first class, pairs of
nodes were randomly joined by arcs; the second
class were the Delaunay triangulations of the
nodes.  Evidently, the arcs of a Delaunay graph
tend to be shorter, and to vary much less in
length, than the arcs of a random graph.  The
agent can decide which of the two types of
graphs it is navigating in by histogramming the
lengths of the arcs that it traverses.  We found
that this decision can be made quite reliably by
the time the agent has traversed a few dozen
arcs.



The studies considered only a few simple goal
seeking strategies.  Many variations on these
strategies could also be considered.  The agent
might also use methods other than “ p u r e ”
search in seeking its goal.  For example, it might
try to discover “landmarks” that could be used
to simplify the process of finding the goal, e.g.,
by moving from landmark to landmark until a
landmark close to the goal is reached, and then
searching for the goal. The choice of landmarks
for use in navigation is another interesting re-
search issue.

The experiments used only two simple classes of
graphs, in which the nodes corresponded to
points randomly chosen in a planar region; the
graphs were either Delaunay triangulations of
these points, or were constructed by joining ran-
domly chosen pairs of the points.  Many other
classes of discrete spaces could have been
used—for example, adjacency graphs of
(irregular) tessellations; graphs derived from
models for geographical processes; graphs de-
rived from real city maps or road networks; and
so on.  Evidently, goal finding strategies  may
differ widely in performance  for different types
of graphs.

The agent’s task was goal finding; as mentioned
above, there are many other types of naviga-
tional tasks. Evidently, different tasks may re-
quire very different strategies; for example,
strategies for traversal (“patrolling”) would be
very different from goal finding strategies.  A
variation on the goal finding task would be the
path shortening problem considered in
[Rosenfeld, Rivlin, and Khuller, 1994]: once a
goal has been found, try to find a shorter path
back to the start node, then a still shorter path
back to the goal, and so on.

The agent was able to move only between
neighboring nodes of the graph; it could not
“jump” or “fly” (or “teleport”).  It had an
absolute position sense, and was also (possibly)
able  to sense the directions to the neighbors of a
node, or even the positions of these neighbors.
Evidently, the difficulty of a navigational task is
highly dependent not only on the nature of the
space, but also on the capabilities of the agent, as
regards both mobility and sensing.

The results obtained also suggest an interesting
class of questions about robotic agents that need
to estimate properties of their environments.
The agent was able to discover the type of graph
in which it was navigating by measuring the
lengths of the arcs it traversed while searching

for a goal, and comparing the histogram of these
arc lengths with the theoretical distribution of
arc lengths for Delaunay graphs.  In this way,
the agent “sampled” the arc length distribution;
however, it could not take a random sample, but
only a “connected” sample obtained as it
moved from node to node.  Nevertheless, we
found that even small samples collected in this
way were sufficient to classify the graph (as De-
launay or random) with high confidence.  We
plan to study the effectiveness of this type of
“robotic sampling” as applied to other types of
estimation tasks—e.g., estimating the parameters
of a distribution of quantities defined on the
nodes or arcs of graphs of given classes—in or-
der to better understand the limitations of esti-
mation processes performed by real robots.

6 Intelligent interfaces: Exploiting experi-
ence in the RADIUS environment

The RADIUS environment (RCDE) has proven
to be a very useful tool for building site models
and monitoring changes [Gerson and Wood,
1994; Sargent et al., 1994; Strat and Climenson,
1994].  However, it may require significant re-
petitive work by the user.  A number of groups
have been exploring the possibility of improving
that process. In our research we are trying to
exploit the use of prior experience to help in
new modeling and exploitation cases. As an ex-
ample, an Image Analyst (IA) performs many
functions and chooses many parameters when
accessing and using RCDE in the Quick-Look
mode [Bailey et al., 1994]. An incremental
learning process is being studied as a tool for
creating an intelligent interface for IAs to sim-
plify and speed up their use of RCDE.

Incremental learning approaches have recently
been used successfully for email routing, news-
group filtering, and calendar scheduling.  The
objective of using learning for these applications
is to “look over the shoulder” of a user, learn
patterns of behavior, and automate software
functions based on these learned behaviors.  The
type of learning system necessary to support this
class of problems must (1) learn over time, (2)
learn quickly, (3) learn with low memory re-
quirements, and (4) learn changing or evolving
concepts.  We are currently developing methods
and systems to support this class of problems.
Preliminary experiments have been reported in
the domain of computer intrusion detection
[Maloof and Michalski 1995a, b].

One potential application of incremental learn-
ing for automating software functions for com-
puter vision systems (e.g., RADIUS, Khoros) is



the Quick-Look concept  [Bailey et al., 1994].
With the Quick-Look concept, incremental
learning can be used to prioritize images and
image regions for exploitation by examining
which images and image regions the IA selects
and the order in which they are selected.  In this
situation, learning could begin with no initial
knowledge about a site or image collection, or
could work from a user-provided profile.

A second application would be in the automa-
tion of repetitive tasks.  Again, the learning sys-
tem would watch the IA perform his or her du-
ties, but would look for repeated sequences of
menu actions or tasks.  For instance, suppose the
IA always performs histogram equalization and
a measurement function after zooming.  After
the system notices and learns this pattern, it may
ask the IA if the transition from the zooming
function to the histogram equalization and the
measurement function can be automated.  If the
IA indicates positively, then in the future, when-
ever the IA zooms into an image region, the
system would automatically invoke the histo-
gram equalization and the measurement func-
tions.  This eliminates the need for the IA to se-
lect this function from a menu.  At any time, the
IA will have the option to either override the
learned function or have the system forget the
function and relearn another.

7 Learning space configurations for the
purpose of solving the homing problem

Another project in the marriage of vision and
learning in which we have been engaged over
the past year is related to learning of space con-
figurations for the purpose of solving the hom-
ing problem. The problem of homing is defined
as the process through which a system possess-
ing visual perception can go from one place to
another place in some environment on the basis
of visual input. The problem, from a technical
point of view, is equivalent to constructing a
number of visual memories of the environment
(knowledge) and then solving the indexing
problem (i.e., the problem of localization — to
what part of the memory does the current im-
aged view correspond).

The major difficulty in addressing such a task, a
difficulty that is representative of the current
state of the art in vision and learning, is that tra-
ditional representations of visual space, being
representations of distance or depth or its de-
rivatives — surface normals and curvature — are
characterized by continuity, while machine
learning techniques are by their definition of a

discrete nature operating on symbolic entities.
Thus, it is necessary to develop representations
of visual space that can be stored in data struc-
tures consisting of discrete symbolic entities in-
volving a small set of symbols.

A representation of visual space that satisfies
these criteria,  currently under development, is
termed ordinal space representation. In such a
representation we do not have knowledge of the
values of the depth or range from the image to
surfaces in the environment; our knowledge is
restricted to ordinal relationships between depth
values (greater, smaller or equal). It is possible to
represent a retinotopic ordinal map by a set of
“symbolic maps” [Aloimonos and Fermueller,
1996 — in these Proceedings].  A collection of
such maps represents space. Transformation, or
rather transmutation, of this knowledge into a
compact format, happens through the extraction
of features from these ordinal maps (see above
reference) and the relating between the features
through a formalism termed “spatial logic”,
currently under development.

8 Learning object functionality

For robots, as for humans, recognizing the func-
tions of objects is often a prerequisite to inter-
acting with them.  Functionality can be defined
as the usability of an object for a particular pur-
pose.

There has been considerable recent research on
the problem of recognizing the functionalities of
static objects.  The goal of this research has been
to determine the functional capabilities of an
object based on characteristics such as shape,
physics and causation. Little attention has been
given to the problem of determining the func-
tionality of an object from its motion.

We believe that motion provides a strong indica-
tion of function.  In particular, velocity, accel-
eration, and force of impact resulting from mo-
tion strongly constrain possible function.  As in
other approaches to functional recognition, the
object (and in our case, its motion) should not
be evaluated in isolation, but in context.  The
context includes the nature of the agent and the
frame of reference it uses.  A robot can learn
object functionality by watching the object in
use.  As an example, the robot might  “see” a
knife being used to slice a loaf of bread and
learn the function of cutting and the context in
which it can be used.



Our research in this area addresses the following
problem:  How can we use the motion of an ob-
ject, while it is being used to perform a task, to
determine its function?  Our method of answer-
ing this question is based on motion analysis of
the given image sequence.  The analysis results
in a few motion descriptors.  These descriptors
are compared with stored descriptors that arise in
known motion-to-function mappings to obtain
function recognition.

Following [Biederman, 1985; Rivlin et al., 1995]
we regard objects as composed of primitive
parts. On the most coarse level we consider four
types of primitive  parts: sticks,  strips, plates, and
blobs, which differ in the values of their relative
dimensions. We can then define the four classes
as follows: If all three dimensions are about the
same, we have a blob.  If two are about the same,
and the third is very different, we have two cases:
if the two are bigger than the one, we have a
plate, and in the reverse case we have a stick.
When no two dimensions are about the same we
have a strip.  For example, a knife blade is a
strip, because no two of its dimensions are simi-
lar.

These primitives can be combined to create
compound objects.  In [Rivlin et al., 1995]  the
different qualitative ways in which these primi-
tives can be combined are described — for ex-
ample, end to end, end to side, end to edge, etc.
In addition to specifying the two attachment sur-
faces participating in the junction of two primi-
tives, we could also consider the angles at which
they join, and classify the joints as perpendicu-
lar, oblique, tangential, etc.  Another refinement
would be to describe qualitatively the position of
the joint on each surface; an attachment can be
near the middle, near a side, near a corner, or
near an end of the surface.  We can also special-
ize the primitives by adding qualitative features
such as axis shape (straight or curved), cross-
section size (constant or tapered), etc.

Functional recognition is based on compatibility
with some action requirement.  Some basic
“actions” are static in nature (supporting, con-
taining, etc.), but many actions involve using an
object while it is moving.  To illustrate the ways
in which one can interact with a primitive, con-
sider the action of  “cutting” with a sharp strip
or plate.  Here a sharp edge is interacting with a
surface.  The interaction can be described from
a kinematic point of view.  The direction of mo-
tion of the primitive relative to its axis defines
the action — for example, slicing or chopping.
We define a primitive motion to be a motion

along, or perpendicular to, a main axis of a
primitive object.  The motion can be either a
translation or a rotation.

Given a moving object as seen by an observer,
we would like to infer the function being per-
formed by the object.  The object is given as a
collection of primitives.  In this example a knife
is described as consisting of two primitives:  a
handle (a stick) and a blade (a strip).  Given this
model, the system estimates the pose of the ob-
ject (as in [Rivlin et al., 1995]) and passes this
information to the motion estimation module.
The model and the results of the motion estima-
tion enable the system to infer the function that
is being performed by the object.

The function being performed by the object de-
pends on the object’s motion in the object’s co-
ordinate system and on its relation to the object
it acts on (the  “actee”; in [Kise et al., 1993;
Kitahashi et al., 1991] , called the “functant”).
This information gives us the relationship be-
tween the direction of motion, the main axis of
the object, and the surface of the actee, and these
relationships determine the intended function.
For example, we would expect the motion of a
knife that is being used to “stab” to be parallel
to the main axis of the knife, whereas if the knife
is being used to “chop” we would expect mo-
tion perpendicular to the main axis. In both
cases, the motion is perpendicular to the surface
of the actee. If the knife is being used to
“slice”, we would expect back-and-forth mo-
tion parallel to its main axes and also parallel to
the surface of the actee.

In summary, perceiving function from motion
provides an understanding of the way an object
is being used by an agent.  To accomplish this
we combine information on the shape of the
object, its motion, and its relation to the actee
(the object it is acting on). Assuming a decom-
position of the object into primitive parts, we
analyze a part’s motion relative to its principal
axes.  Primitive motions (translation and rotation
relative to the principal axes of the object) are
dominating factors in the analysis.  We use a
frame of reference relative to the actee.  Once
such a frame is established, it can have major
implications for the functionality of an action.

Several sequences of images have been used to
demonstrate the approach; the details are given
in a separate paper in these Proceedings [Duric
et al., 1996]. In the first three sequences, motion
was used to discriminate between three cutting
actions:  stabbing, chopping and slicing.  In still



other sequences [Duric et al., to appear], we used
motion information to differentiate between two
different functionalities of the same object:
scooping and hitting with a shovel, and ham-
mering and tightening with a wrench.  These
examples of double usage are typical instances
of improvisation; motion provides clear infor-
mation for a correct interpretation of the action
that is taking place.

Figure  3: Tightening motion with a wrench.

Figure 4: Flow vectors for tightening with a  
      wrench.

An  example of applying our method to an im-
age sequence is shown in Figures 3, and 4. Fig-
ure 3 shows a motion sequence of a wrench
tightening a screw and Figure 4 shows the nor-
mal flow field for one frame of the sequence.

Natural extensions of this work include the
analysis of more complex objects.  Complexity
can be expressed in terms of either the shapes of
the parts or the way in which the parts are con-
nected.  An interesting area is the analysis of
articulated objects.  The different types of con-
nections between the parts constrain the possible
relative motions of the parts.  A pair of pliers or
a pair of scissors is a simple case, with only a

single articulated connection (one degree of
freedom in the relative motion of the parts).

Work is in progress in which the methods devel-
oped on this project are used to demonstrate
how a robot can learn the functionality of an
object by observing image sequences in which
the object is performing actions which accom-
plish its function(s).
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