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Abstract

This paper presents work in progress on
an approach to the problem of recogniz-
ing blasting caps in x-ray images. An
analysis of functional properties of blast-
ing caps was used to design the representa-
tion space, which combines intensity and
shape features. Recognition proceeds in
two phases. The first phase is a bottom-
up process in which low intensity blobs are
used as attention-catching devices to gen-
erate object hypotheses. The second phase
is a top-down process in which object hy-
potheses are confirmed or rejected by fit-
ting a local model to ribbons surrounding
the low intensity blob. The local model is
acquired using inductive learning. Flexible
matching routines are used during recogni-
tion that provide a measure of confidence
for the identification. Experimental results
demonstrate the ability to learn the rela-
tionship between image characteristics and
object functionality.

1 Introduction

This paper presents work in progress on an approach
to the problem of recognizing blasting caps in x-ray
images. This problem is an instance of a class of
problems in which a vision system must inspect a se-
quence of images for known objects. Unfortunately,
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the fact that the object is known is often of little
or no help. If there is little standardization of the
class of known objects, it becomes impractical to at-
tempt to model the objects geometrically. Yet, what
often constrains the class of known objects is their
functionality [Freeman and Newell, 1971; Stark and
Bowyer, 1991; Rivlin et al., 1994]. Consequently,
learning can be useful for acquiring the relationship
between image characteristics and object function-
ality [Woods et al., 1995].

Our primary focus is to investigate how vision and
learning can be combined to find blasting caps as
well as objects that could occlude blasting caps. In
a previous study [Maloof and Michalski, 1995], learn-
ing was used to acquire concept descriptions of blast-
ing caps. Simple segmentation techniques were used
to isolate objects from their background; they were
then represented using intensity and geometric fea-
tures.

For the work presented here, an analysis of func-
tional properties of blasting caps was conducted to
design the representation space for learning, which
combines intensity and shape features. The first
phase of the approach is a bottom-up process in
which low intensity blobs, which possibly correspond
to heavy metal explosive in the approximate middles
of blasting caps, are used as attention-catching de-
vices to generate object hypotheses.

In the second phase, a top-down process, object hy-
potheses are confirmed or rejected by fitting a local
model to ribbons surrounding the low intensity blob.
These ribbons possibly correspond to the metal shell
of the blasting cap. The local model is acquired
using the inductive learning system AQ15c [Wnek
et al., 1995] and is represented as a set of decision
rules. Flexible matching routines are used during
recognition that provide a measure of confidence for
the identification. Experimental results demonstrate
the ability of an inductive learning system to acquire
the relationship between image characteristics and
object functionality.
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Figure 1: The geometry of x-ray imaging [Dance,
1988].

This research provides an opportunity to study
the interplay between vision and learning processes
[Michalski et al., 1994], especially as it relates to
learning object functionality. A vision system ca-
pable of reliably recognizing blasting caps or objects
that could occlude blasting caps could be used to aid
airport security personnel with luggage screening.

2 Preliminaries

2.1 Imaging System and Image
Formation

A typical x-ray imaging system consists of an x-ray
tube (photon source), an anti-scatter device, and a
receptor (photon detector) [Dance, 1988]. The pho-
tons emitted by the x-ray tube enter the objects,
where they may be scattered, absorbed or trans-
mitted without interaction. The primary photons
recorded by the image receptor form the image, but
the scattered photons create a background signal
(i-e., noise) that degrades contrast. In most cases,
the majority of the scattered photons can be re-
moved by placing an anti-scatter device between the
objects and the image receptor.

What follows is a simple mathematical model of
the imaging process. We start by considering a
monochromatic x-ray source that emits photons of
energy F and is sufficiently far from the objects (lug-
gage) being inspected that the photon beam can be
considered to be parallel (see Figure 1). The incident
photon beam is parallel to the z direction and the
image is recorded in the zy plane. We assume that
each photon interacting with the receptor is locally
absorbed and that the response of the receptor is
linear, so that the image may be considered as a dis-
tribution of absorbed energy. If there are N photons
per unit area incident on the object and I(z,v) dz dy
is the energy absorbed in area dz dy of the detector,

then

I(z,y) =

exp (—/,u(x,y,z)dz) .

Ne(E,0)E(1+ R) (1)

where the line integral is over all materials along
the path of the primary photons reaching the point
(z,v), p(z,y, 2) is the linear attenuation coefficient,
e(E,0) is the energy absorption efficiency of the re-
ceptor for the photon energy level E at an incident
angle of 0, and R is the ratio between the scattered
and primary radiation (which is usually very small).

2.2 Imaging Model

Following the description in Section 2.1, we assume
orthographic image projection (see Figure 1). The
image of the object point (X,Y, Z) is the point (z,y)
such that

r=sX, y=sY, (2)

where s is a constant. The image intensity at the
pixel (z,y) is obtained by integrating (1) over the
area of the pixel in the image receptor.

2.3 The AQ Learning Method

AQ15c [Wnek et al., 1995] is the latest implementa-
tion of the AQ algorithm [Michalski, 1969]. AQ is
an inductive learning algorithm that learns decision
rules from training examples encoded as VL expres-
sions. VL; is an attributional variable-valued logic
system and is a subset of the first order variable-
valued logic system VL,. For the attributional case,
each training example is represented as a vector of
attribute-value pairs annotated with a concept label.

The representation space for a problem is the set
of all terms and their domains used to encode a
problem for learning. Thus, a training example is
a point in the representation space. Conceptually,
rules carve out decision regions in the representation
space that cover training examples in a way that is
consistent with their concept labels. Computing the
set of maximally general decision rules that cover all
positive and no negative training examples is a spe-
cial case of the general covering problem, which is
known to be NP-complete. The AQ algorithm com-
putes quasi-optimal solutions for this problem and
guarantees that learned concept descriptions cover
all positive and no negative training examples.

During recognition, learned concept descriptions, in
this case rules, are matched to observations to de-
duce class membership. Depending on the generality
of the rules induced by AQ, areas of the represen-
tation space may not be covered explicitly by any
rule. If an observation happens to be taken from an
uncovered region, using a strict matching method,
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Figure 2: Detailed x-ray of a blasting cap.

this observation would remain unclassified — which
in certain situations may be desirable. On the other
hand, if using a flexible matching method, all obser-
vations not explicitly covered by a rule can be clas-
sified by assigning it the concept label of the clos-
est concept description in the space. Several flexi-
ble matching schemes exist and use various metrics
when computing the degree of match, including syn-
tactic distance, number of satisfied rule conditions,
and rule strength.

3 Problem Statement

The intensity in x-ray images is proportional to the
number of x-ray photons that pass through objects
on their path from the source to the receptor (see
Section 2.1). Since different materials have differ-
ent transparency properties, the intensity of an x-
ray image depends on both the thickness and the
type of material between the source and the recep-
tor. Moreover, any x-ray photon that is not ab-
sorbed by one object on its path can be absorbed by
another. Thus, a thick layer of semi-transparent ma-
terial can have the same effect on the image receptor
as a thin layer of opaque material.

Although blasting caps are manufactured objects,
there is enough variability in their manufacture that
makes a CAD-based recognition system impracti-
cal. What is common to all blasting caps, however,
is their functionality. Ultimately, blasting caps are
defined by their functional properties, not by their
shapes.

A typical blasting cap (see Figure 2) consists of a
cylindrical metal shell filled primarily with the ex-
plosive. In its approximate middle, there is a small
globule of heavy metal secondary explosive. Finally,

leg wires from the electric ignitor extend from one
of the ends. The most dense (opaque to x-rays)
part of a blasting cap is the concentration of the
heavy metal explosive, which is approximately cen-
trally symmetric. The leg wires also produce dense
features, but are very thin. Finally, the copper or
aluminum tube filled with explosive, which is ax-
ially symmetric, is typically more dense than the
surrounding areas of the luggage.

Regarding images of blasting caps, we begin by con-
sidering a generic blasting cap that is not occluded
by opaque material. Let [ be the length of an ap-
proximately cylindrical blasting cap, r be its radius,
and o be the angle between the axis of the cap and
the image receptor. Consider the length of the path
pof an x-ray photon as it passes through the blasting
cap. When o = 0, p ranges from 27 at the axis to 0 at
the occluding contour. In general, p is multiplied by
seco; however, p cannot be longer than [. From (1),
we see that the number of photons passing through
the blasting cap decreases exponentially as p grows.
From (2), we see that the image of a blasting cap
is rectangularly shaped; its width is approximately
2rs, and its length is approximately lsseco. Its in-
tensity is lowest along the axis of the blasting cap,
and highest along the occluding contour, which pro-
duces a low contrast boundary. Also, the image of
the heavy metal secondary explosive (see Figure 2)
appears as a small approximately symmetric blob on
the axis of the blasting cap. The center of the blob
is nearly opaque and thus its intensity is near zero.
The boundary of the blob is lighter, but still has a
very low intensity. The leg wires are strong features,
but are not clearly visible in the images.

Therefore, the strongest feature of a blasting cap is
the low intensity blob in the center of a rectangular
ribbon of higher intensity. The intensity of both the
blob and the ribbon is lowest along the axis of the
blasting cap and highest along the occluding con-
tour. Finally, if a blasting cap is occluded by any
object, its image will be darker than the image of a
blasting cap that is not occluded.

3.1 The Method and Experimental
Results

We present a two phase, bottom-up and top-down
learning approach for recognizing blasting caps in x-
ray images. In the first phase, low intensity blobs,
which serve as attention-catching devices, are used
to generate object hypotheses. These low-intensity
blobs correspond to the secondary high explosive,
which is typically a heavy metal compound, located

'In our examples, image resolution is 565 x 340 and
the leg wires are barely visible. Currently, we are work-
ing to obtain images of higher resolution so that the leg
wires can be detected.
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Figure 3: Sample image used for experimentation.

near the middle of the blasting cap (see Figure 2).

In the second phase, each generated hypothesis
spawns a process that attempts to fit a local model
to ribbon-like features surrounding the blob. These
ribbon features correspond to the metal body of the
blasting cap (see Figure 2). The local model is ac-
quired using the inductive learning system AQ15c
and captures intensity and geometric features of
both the low intensity blob and the surrounding rib-
bon shape. A flexible matching routine is used to
match the local model to the image characteristics,
which not only produces an object identification, but
also yields a confidence in the identification.

The x-ray images used for experimentation were of
luggage containing blasting caps appearing in vary-
ing orientations and under varying amounts of clut-
ter, which included clothes, shoes, calculators, pens,
bolts, batteries, and the like. The luggage was im-
aged much as it would be in an airport scenario:
flat in relation to the x-ray source, but rotated in
the image plane. Five images were selected from a
set of 30 which were of low to moderate complexity
in terms of clutter and positional variability of the
blasting cap. Figure 3 shows one of the images used
for experimentation.

Regions of interest were interactively determined,
and contained low intensity blobs and ribbons corre-
sponding to positive and negative examples of blast-
ing caps. From each of the 64 selected regions, 27 ge-
ometric (e.g., compactness and proximity measures)
and intensity-based features (e.g., minimum, maxi-
mum, and average) were computed, resulting in 28
blasting cap and 38 non-blasting cap objects. The
AQ15c [Wnek et al., 1995] inductive learning system
was used to learn concept descriptions of blasting
caps and non-blasting caps.

Induced concept descriptions from AQ15¢ were vali-
dated using 100 iterations of 2-fold cross-validation.
This validation method involves 100 learning and

Average Predictive Accuracy (%)
Overall Correct 83.51+1.3
Incorrect | 16.49+1.3
Blasting Cap Correct 85.82+2.1
Incorrect | 14.18+2.1
Non-Blasting Cap | Correct 81.19+24
Incorrect | 18.81+2.4

Table 1: Summary of quantitative experimental re-
sults.

Figure 4: Test image for applying learned concepts.

recognition runs. For each run, the extracted image
data was randomly partitioned into a training set
and a testing set. After learning from examples in
the training set, the induced concepts were tested
using examples in the testing set. We can compute
the predictive accuracy for each run based on the
correct or incorrect classification of the examples in
the testing set. The overall predictive accuracy for
the experiment is the average of the accuracies com-
puted for each run. These results are summarized
in Table 1 and show the average predictive accuracy
with a 95% confidence interval for the overall exper-
iment and for each class.

As a qualitative demonstration of the method,
learned concepts were also applied to an unseen im-
age. The learned concepts from AQ15c¢ using train-
ing data from four images were tested on objects ex-
tracted from a fifth, unseen image, which is shown
in Figure 4. Objects 1-6 are blasting caps, objects
7-10 are not. Object 5, which is a blasting cap, was
mis-classified. All other objects in this image were
classified correctly.

4 Conclusions

This paper presented work in progress on the prob-
lem of recognizing blasting caps in x-ray images. In
the first phase of a two phase learning approach,
low intensity blobs were used as attention-catching
devices. This bottom-up process was followed by a



top-down recognition process in which a learned lo-
cal model was matched to ribbon-shaped image re-
gions surrounding a low intensity blob. An analysis
of functional properties of blasting caps was used to
design the representation space for learning, which
combined intensity and geometric features. Experi-
mental results suggest that learning can be used to
acquire functional descriptions of objects. This is
important for classes of objects for which geometric
modeling is impractical.

Future work in this area will involve further automa-
tion of the feature extraction process and object la-
beling functions. In addition, other functional prop-
erties present in blasting caps still require exploita-
tion. An example is the presence of leg wires (see
Figure 2). Unfortunately, the current image set is
not of a resolution that allows for the detection of
these functional properties. We hope to acquire ad-
ditional images that will be better suited for this
type of analysis.
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