
Proceedings of the 2003 International Joint Conference on Neural Networks, 2764–2769.
Los Alamitos, CA: IEEE Press

Incremental Rule Learning with Partial Instance Memory for Changing Concepts

Marcus A. Maloof
Department of Computer Science

Georgetown University
Washington, DC 20057-1232

maloof@cs.georgetown.edu

Abstract— Learning concepts that change over time is impor-
tant for a variety of applications in which an intelligent system
must acquire and use a behavioral profile. Computer intrusion
detection, calendar scheduling, and intelligent user interfaces are
three examples. An interesting class of methods for learning such
concepts consists of algorithms that maintain a portion of pre-
viously encountered examples. Since concepts change over time
and these methods store selected examples, mechanisms must
exist to identify and remove irrelevant examples of old concepts.
In this paper, we describe an incremental rule learner with partial
instance memory, called AQ11-PM+WAH, that uses Widmer and
Kubat’s heuristic to adjust dynamically the window over which it
retains and forgets examples. We evaluated this learner using the
STAGGER Concepts and made direct comparisons to AQ-PM and to
AQ11-PM, similar learners with partial instance memory. Results
suggest that the forgetting heuristic is not restricted to FLORA2,
the learner for which it was originally designed. Overall, results
from this study and others suggest learners with partial instance
memory converge more quickly to changing target concepts than
algorithms that learn solely from new examples.

I. INTRODUCTION

An interesting class of incremental learning methods con-
sists of algorithms that maintain past concept descriptions [1]
or previously encountered examples [2], [3], [4]. Most if not
all of these efforts have been directed at learning concepts
that change or drift [5]. If such learners successfully identify
and leverage the stored examples pertaining to the new target
concept, then they should have an advantage over algorithms
that learn solely from new examples. Concepts that change
over time occur in applications in which an intelligent system
must acquire a model of human behavior. These include
intrusion detection systems [4], market-basket analysis [6],
e-mail importance ranking [2], calendar scheduling [7], and
intelligent user interfaces [8].

Researchers have investigated several methods of retaining
and then discarding examples of old concepts. One is to
remove examples after a fixed period of time [1], [4], [9].
Another is to determine this period dynamically in response
to changing performance [3].

We have investigated learners that maintain examples that
lie on rule boundaries [2], [4], [10]. When new examples ar-
rive, the learner produces new rules and forgets those examples
that no longer fall on the boundaries of the new rules. To learn
concepts that change over time, we have combined this method
with mechanisms that remove examples after a fixed period of
time [4], [10]. Thus far, we have considered applications of

this method to computer misuse detection [4], [10], [11], shape
detection [4], and e-mail importance ranking [2].

Recently, we described AQ11-PM [10], an incremental rule
learner with partial instance memory that stores and uses
examples falling on the boundaries of rules. By also forgetting
examples after a fixed period of time, we showed empirically
using the STAGGER Concepts [5] that it achieved comparable
or superior predictive accuracy while maintaining fewer ex-
amples, as compared to similar systems designed for this task
[3], [4].

In this paper, we extend our previous work by augmenting
AQ11-PM [10] with a heuristic that determines dynamically
the period over which the learner retains examples [3]. We
evaluated this new system, AQ11-PM+WAH, on the STAGGER

Concepts [5] and found it competitive with or superior to other
learners in terms of predictive accuracy and the number of
examples maintained, an outcome consistent with our previous
studies [4], [10].

In the sections that follow, we provide a considerable discus-
sion of background material for readers unfamiliar with rule
learning. In particular, we cover batch and incremental rule
learning, partial instance memory, and heuristics for retaining
and forgetting examples. We then describe an experiment and
its outcome in which we evaluated AQ11-PM+WAH using the
STAGGER Concepts [5]. We also make direct comparisons to
three other learners. We conclude the paper with a discussion
of the experimental results and of plans for future work.

II. BACKGROUND

A. Rule Learning

Off-line or batch concept learning involves recovering the
unknown function f from the set S = {(~x, y) : y = f(~x)}.
Each element of S is a training example, each dimension
of ~x, an attribute, and each component of ~x, an attribute
value. For concept learning, y takes values of a finite set, and
without loss of generality, we will assume that y ∈ {+,−},
indicating positive and negative examples of the concept f . In
practice, the number of examples in S is a small percentage
of the number possible, so we can only approximate f as
f̂ . Numerous representations exist for f̂ , such as rules (e.g.,
[12]), trees (e.g., [13]), probabilities (e.g., [14]), and weights
between a collection of non-linear processing units (e.g., [15]).

Rules are quite simple, consisting of the familiar form: if
<condition> then <action>. For our purposes, <condition>
is a conjunction of simple tests, each returning true if a

c© 2003 IEEE 2764



given attribute takes certain values (e.g., [color = red, blue]).
<action> assigns a class label to a decision variable. Notice
that each training example is a maximally specific rule, with
each condition testing for only one value. Using single rules,
we can represent conjunctive concepts. Using multiple rules,
we can represent disjunctive concepts.

Given a set of rules and an unknown instance (i.e., ~x ), a rule
learner’s performance element uses the unknown’s attribute
values to satisfy a rule’s conditions and assigns the rule’s class
label to the decision variable, which in turn, is the prediction
for the unknown. Rules carve out decision regions in the space
of examples, leaving some of the space uncovered, so an
instance may not satisfy a rule. If an application requires the
assignment of a class label, then we can flexibly match rules
by, say, selecting the rule with the most true tests.

Learning rules from examples is an instance of the set-
covering problem [16], with the added restriction that covers
of one set cannot intersect with points of another. An NP-hard
problem, the AQ algorithm is a heuristic method for inducing
rules from examples under this constraint [17]. Other rule
learning methods include CN2 [18], IREP [19], and RIPPER

[20].
The AQ algorithm begins by selecting a positive example

and generalizing it without covering any negative example,
thereby forming a rule. It then removes the positive examples
the rule covers and repeats with the remaining positive exam-
ples until covering them all. The algorithm forms rules for the
negative class in the same fashion.

As an illustration, consider learning the concept of a person
who is able to vote. In the United States, men and women
who are at least eighteen years of age can vote. Using two
attributes to represent examples, gender ∈ {M, F} and age
∈ {0, 1, . . . , 120}, assume we have the following training
examples: {〈M, 54 : +〉, 〈F, 42 : +〉, 〈M, 22 : +〉, 〈F, 32
: +〉, 〈F, 11 : −〉, 〈M, 14 : −〉, 〈M, 8 : −〉, 〈F, 16 : −〉}.

If we pick the positive example 〈M, 22 : +〉, its equivalent
rule is if [gender = M] & [age = 22] then [decision = +]. By
adding a test for the value F to the condition for the gender
attribute, we can generalize the rule without intersecting any
negative example, yielding if [gender = M, F] & [age = 22]
then [decision = +]. One way to generalize the condition for
the age attribute is to extend its range up to 120, which also
yields a rule that does not intersect a negative example: if
[gender = M, F] & [age = 22. . . 120] then [decision = +].
Another is to extend the range of the condition for age down
to 17, producing if [gender = M, F] & [age = 17. . . 120] then
[decision = +]. Since the condition for gender tests for all
of the attribute’s values, we can remove it, giving the rule
if [age = 17. . . 120] then [decision = +]. Applying the same
procedure to the negative examples produces the rule if [age
= 0. . . 21] then [decision = −].

Clearly, these rules overlap, and for instances with values of
age between 17 and 21, the performance element could return
either or no decision. (It is possible for AQ to produce disjoint
rules.) However, had the examples 〈F, 18 : +〉 and 〈M, 17
: −〉 been in the training set, then AQ would have produced

rules correctly representing the target concept. This illustrates
the importance of examples near the boundaries of concepts,
an issue to which we return in Section II-D.

The previous two rules were discriminant descriptions [21]
since they consist only of those attributes and values necessary
for discriminating between objects of the two classes. AQ

can also generate characteristic descriptions that consist of
all attributes and values present in the training set. Notice
that rules are axis-parallel hyper-rectangles in the space of
examples, and that characteristic rules form the tightest hyper-
rectangle about a set of examples.

Over the years, researchers have built numerous systems
based on the AQ algorithm. Most are batch learning systems
for inducing propositional rules, but INDUCE learns first-order
rules [22]. There are also on-line versions of the AQ algorithm,
and in the next section, we describe AQ11 [23], which learns
rules incrementally with no instance memory.

B. On-line and Incremental Rule Learning

On-line learning is similar to batch learning, discussed in
Section II-A, except training examples are distributed over
time: St = {(~x, y) : y = f(~x)}, for t = 1, . . . ,∞. Now, f̂t

approximates f . On-line learning is important for applications
in which we cannot collect all pertinent training data before
applying an algorithm, and these include e-mail sorting [24],
calendar scheduling [25], intelligent user interfaces [8], image
analysis [26], and computer intrusion detection [4].

If the algorithm discards f̂t−1 and generates f̂t from Si,
for i = 1, . . . , t, then it is on-line batch or temporal batch
with full instance memory. If the algorithm modifies f̂t using
f̂t−1 and St, then it is incremental with no instance memory.
The first method has the advantage of learning from all
available training data, but can be computationally expensive.
Incremental learning can be faster, but induced rules may not
be consistent with previously discarded examples. There are,
however, incremental learners with full instance memory (e.g.,
[27], [28], [29]).

AQ11 [23] is an extension of the AQ algorithm and in-
crementally learns rules from training data with no instance
memory. To illustrate its operation, assume we start with the
two examples 〈M, 54 : +〉 and 〈F, 11 : −〉. From these, the
AQ algorithm produces the rules if [gender = M] & [age =
12. . . 120] then [decision = +] and if [gender = F] & [age
= 0. . . 53] then [decision = −]. When 〈F, 42 : +〉 arrives as
the next example, AQ11 adds the value F to the condition for
gender of the positive rule so it covers the new example. It can
then drop the condition since it involves all values of gender,
yielding the rule if [age = 12. . . 120] then [decision = +].

When 〈M, 14 : −〉 arrives, AQ11 generalizes the negative
rule in the same manner, producing if [age = 0. . . 53] then
[decision = −]. However, notice that the positive rule covers
this new negative example, but AQ11 can specialize the rule
by changing [age = 12. . . 120] to [age = 15. . . 120], thereby
restricting the range that age can take, giving if [age =
15. . . 120] then [decision = +].



To generalize and specialize rules, AQ11 takes advantage
of the AQ algorithm’s ability to generate covers that do
not intersect points of other sets. As discussed previously,
training examples (i.e., points) are maximally specific rules
(i.e., covers). Therefore, to generalize a positive rule, AQ11
creates a set consisting of the rule and the new uncovered
positive example, and uses the AQ algorithm to compute a
new cover against a set containing negative rules and negative
training examples. The resulting cover will not intersect the
negative set.

As mentioned previously, AQ11, like most incremental
learners with no instance memory, is susceptible to ordering
effects. For example, if a learner has the rule if [age =
15. . . 120] then [decision = +] and receives the example 〈M,
13 : +〉, it may generalize the rule to if [age = 13. . . 120] then
[decision = +], which covers the example 〈M, 14 : −〉, encoun-
tered in the previous trial. Properly setting AQ11’s parameters
can reduce such problems, but these difficulties have prompted
some researchers to consider on-line learners with full instance
memory (e.g., [27], [28], [29]). These learners maintain all
previously seen examples, which minimizes ordering effects
at the expense of memory, but as we see in the next section,
these learners do not fare well when concepts drift or change.

C. Concept Drift

A particularly interesting problem for on-line learning is
when f , the target concept, changes over time (i.e., ft), known
as the problem of drifting concepts, changing concepts, time-
varying concepts, or nonstationary environments. In this area,
there has been formal [30], [31] and empirical work with
synthetic [3], [4], [5], [10] and real data sets [7], [32].

When concepts drift, the on-line schemes discussed in the
previous section may not fare well. Any learner will perform
poorly when a concept first changes, but schemes that learn
with full instance memory will have great difficulty converging
to the new target concept. The learner will perform poorly
until examples from the new concept overwhelm those from
the old one. Indeed, research suggests that learners that modify
only their concept descriptions converge more quickly and to
a higher accuracy on these tasks [5], [10].

If a learner stores and uses all previous examples, then when
concepts change, perhaps it should discard all examples but
those in the new training set. If the new and old concepts
are completely disjoint, then this is a fine policy. However,
if the concepts overlap, then there will be old examples
useful for learning the new concept, and leveraging these will
speed convergence to the new concept. This has prompted
some researchers to consider schemes that store some of the
examples from the input stream, the topic of the next section.

D. Incremental Learning with Partial Instance Memory

After concepts change, a learner with full instance memory
will not converge as quickly to the new target concept as
a learner that modifies its concept descriptions. However, if
the former learner could identify those past examples that are
consistent with the new target concept, then it should converge

more quickly than an incremental learner with no instance
memory.

Researchers have investigated several schemes of selecting
examples from the input stream. The IB2 algorithm [33], an
instance-based learner, stores only those examples it misclas-
sifies. Since most misclassifications occur at the boundaries of
concepts, IB2 stores examples near this interface. The original
motivation for this algorithm was not concept drift, so if
used for this purpose, additional mechanisms will be required
to remove outdated examples. A simple method is to store
examples over a fixed window of time [4], [9]. Naturally,
performance is dependent on selecting the correct size of the
window, so some researchers have examined heuristics for
dynamically sizing these windows [3].

Similarly, AQ11-PM has partial instance memory, but it
selects examples from the boundaries of its rules [10]. An ex-
tension of the AQ11 algorithm [23], AQ11-PM uses its rules to
select examples from the training set that lie on the boundaries,
storing these so-called extreme examples in memory [4]. When
new examples arrive, the algorithm combines them with those
held in memory and applies the AQ11 algorithm to modify
the current set of rules. As rules change, AQ11-PM can forget
examples in partial memory that no longer enforce a boundary,
an implicit forgetting process since there is no explicit criteria
for removing an example. However, to track drifting concepts,
explicit forgetting may be necessary to, say, remove examples
after a specified period of time.

To find extreme examples, AQ11-PM uses the AQ11 algo-
rithm to induce rules from examples. As a post-processing
step, it produces characteristic descriptions, which form the
tightest hyper-rectangle about the training examples. The al-
gorithm then manipulates the rules to select examples from
the corners, edges, or surfaces [4].

Consider again the example of learning who can vote. Given
the two examples 〈M, 54 : +〉 and 〈F, 11 : −〉, AQ11-PM will
learn the rules if [gender = M] & [age = 12. . . 120] then
[decision = +] and if [gender = F] & [age = 0. . . 53] then
[decision = −]. The corresponding characteristic rules are if
[gender = M] & [age = 54] then [decision = +] and if [gender
= F] & [age = 11] then [decision = −]. It is trivial to see that
these match the training examples, which the algorithm stores
in memory with the rules.

Suppose 〈M, 32 : +〉 arrives next. The positive rule covers
the example, but AQ11-PM specializes the negative rule,
producing if [gender = F] & [age = 0. . . 31] then [decision =
−]. The new positive characteristic rule is if [gender = M] &
[age = 32, 54] then [decision = +], which matches the new
example, so AQ11-PM includes it in partial memory.

When the example 〈M, 22 : +〉 arrives, the positive rule
covers it, AQ11-PM specializes the negative rule, and the new
characteristic positive rule is if [gender = M] & [age = 22, 32,
54] then [decision = +]. However, the rule that matches the
examples on its corners is if [gender = M] & [age = 22, 54]
then [decision = +]. This rule matches the new example and
the example 〈M, 54 : +〉 held in memory. The learner includes
these in memory, but discards the example 〈M, 32 : +〉, since



the modified characteristic rule no longer matches it. We give
the full details of this selection algorithm elsewhere [4].

Incrementally learning with partial instance memory may
lessen some ordering effects. Certain applications may re-
quire additional mechanisms to remove examples from partial
memory when they become too old, to weight recently seen
examples more than others, or to prevent the removal of
extreme examples from memory that no longer fall on a
rule boundary. This is generally true for domains in which
concepts change, and in the next section, we survey heuristics
for forgetting old examples.

E. Heuristics for Forgetting

When using a learner with partial instance memory to
acquire concepts that change, there must be a mechanism to
remove irrelevant examples of the old concept. In the previous
section, we discussed how AQ11-PM removes examples when
they no longer fall on rule boundaries. We have also examined
forgetting examples when they fall outside of a fixed window
of time [4], [10]. A disadvantage of this approach is it limited
to concepts that change with known and fixed periodicity.

Widmer and Kubat [3] investigated a heuristic approach
to size such a window dynamically. Their window adjust-
ment heuristic (WAH) takes into account current performance,
whether accuracy is decreasing, and the coverage of the current
concept descriptions, as shown in Figure 1. The user must
set three parameters that determine thresholds for acceptable
coverage and accuracy, but provided that concepts do not
change too frequently, this heuristic will, in principle, size
a forgetting window irrespective of the periodicity of change.

The heuristic takes four actions: reduce the window’s size
by 20%, reduce it by one time unit, make no change, and
increase it by one. When concepts change, signaled by low
coverage or by poor and decreasing accuracy, the heuristic

Window-Adjustment-Heuristic ()

lc: threshold for low coverage, user-defined
hc: threshold for high coverage, user-defined
p: threshold for acceptable accuracy, user-defined
N: examples covered by the positive concept description
S: number of conditions in the positive description
Acc: accuracy of current concept descriptions
w: window size

if (N/S < lc ∨ (Acc < p ∧ decreasing(Acc)))
∆w = −0.2w;

else if (N/S > 2.0× hc ∧ Acc > p)
∆w = −1.0;

else if (N/S > hc ∧ Acc > p)
∆w = 0.0;

else
∆w = 1.0;

w = w + ∆w;
end.

Fig. 1. Heuristic for dynamically sizing a window of time [3].

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

Target concept,
t = 1 . . . 39.

Target concept,
t = 40 . . . 79.

Target concept,
t = 80 . . . 120.

Fig. 2. Visualization of the STAGGER Concepts [4]. c© 2000 Kluwer
Academic Publishers.

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120
Pr

ed
ic

tiv
e 

A
cc

ur
ac

y 
(%

)

Time Step (t)

AQ11-PM+WAH
AQ11-PM

AQ11
AQ-PM

Fig. 3. Predictive accuracy for the STAGGER Concepts.

quickly decreases the size of the window by 20%. As the
learner acquires new concepts, the heuristic makes no change
to the window’s size or increases it gradually. When concepts
are stable, signaled by high coverage and acceptable accuracy,
the heuristic gradually decreases the window’s size. In the
next section, we present experimental results for a version of
AQ11-PM augmented with the WAH.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results for a version
of AQ11-PM augmented with Widmer and Kubat’s [3] window
adjustment heuristic (WAH). We evaluated this new system,

0

5

10

15

20

0 20 40 60 80 100 120

E
xa

m
pl

es
 M

ai
nt

ai
ne

d

Time Step

AQ11-PM+WAH
AQ11-PM

AQ-PM

Fig. 4. Examples maintained in partial memory for the STAGGER Concepts.



called AQ11-PM+WAH, using the STAGGER Concepts [5], a
benchmark for testing learners in the presence of concept
drift. Using predictive accuracy and the number of examples
maintained in memory as performance metrics, we made
direct comparisons to AQ11 [23], AQ-PM [4], AQ11-PM [10].
(AQ-PM is a temporal-batch learner with partial instance
memory.)

The STAGGER Problem [5] consists of three target concepts,
as shown in Figure 2. Three attributes encode objects: size,
taking values small, medium, and large; shape, taking values
circle, triangle, and rectangle; and, color, taking values red,
blue, and green. The presentation of examples occurs over
three periods, each consisting of forty time steps. The target
concept for the first period is [size = small] & [color = red].
For the second period, it is [color = green] ∨ [shape = circle].
For the third, the target is [size = medium, large]. For each
of the 120 time steps, the learner receives either a positive or
negative example of the target concept drawn randomly. After
adjusting its concept descriptions, as a test, the learner must
classify 100 examples, also drawn randomly.

To conduct the experiment, we repeated this protocol fifty
times for the four learners, measuring predictive accuracy and
the number of examples held in memory. The parameters for
the WAH were lc = 0, hc = 4, and p = 80. In Figure 3, we
present the accuracy averaged over these fifty runs with 95%
confidence intervals.

On the first concept, AQ11-PM+WAH quickly achieved
100% accuracy, and on the second, it was competitive with
AQ11-PM operating with a fixed window of fifty time units
(i.e., the learner forgets examples older than fifty). However,
on the third concept, AQ11-PM appears to perform slightly
better without adaptive windowing. AQ11, despite its poor
performance on the second concept, converged to the third
concept more quickly than did the other learners, an issue to
which we return in the next section. Nevertheless, AQ11-PM

with and without the WAH outperformed AQ-PM on all three
concepts.

Turning to memory requirements, in Figure 4, we see
the average number of examples the partial-memory learn-
ers maintained over fifty runs, again with 95% confidence
intervals. (Note that AQ11 does not maintain examples, which
is why a curve for it is not present.) On average, AQ11-PM

and AQ11-PM+WAH maintained roughly the same number of
examples: 10.1±0.8 and 9.5±1.7, respectively. Although these
learners maintained more examples than did AQ-PM, they also
achieved higher predictive accuracy. What is striking about the
performance of AQ11-PM+WAH is the relatively high variance
during the acquisition of the first concept and the lack of
variation during the second and third, an issue we discuss
with others in the next section.

IV. DISCUSSION

Previous results and those reported herein suggest that
partial-memory learners, such as FLORA2 [3], AQ-PM [4],
AQ11-PM [10], and AQ11-PM+WAH converge more quickly to
new target concepts than do systems that learn incrementally

by adjusting concept descriptions [5], [10]. The reason, we
contend, is partial-memory learners can leverage examples in
their store pertaining to the new target concept, which leads
to faster convergence.

Results also indicate that AQ-PM [4], AQ11-PM [10], and
AQ11-PM+WAH are competitive with FLORA2 [3] in terms of
predictive accuracy, but the AQ systems maintain significantly
fewer examples. FLORA2 uses the WAH to maintain a varying
number of examples drawn consecutively from the input
stream. As a result, its store may contain redundant and
irrelevant examples. The AQ systems with partial memory
store a nonconsecutive collection of examples that enforce
rule boundaries. Consequently, the AQ systems maintain fewer
examples and achieve comparable accuracy.

Our results are notable with one exception: AQ11 outper-
formed AQ11-PM and AQ11-PM+WAH on the third concept.
(See Figure 3.) We have argued elsewhere [10] that AQ11
performed well on the third concept because it performed so
poorly on the second. Our reasoning was that rules poorly
representing the second concept would be easy to change
when learning the third concept. Had AQ11 learned the second
concept as well as AQ11-PM had, then its performance would
have been equal to or worse than AQ11-PM (and AQ11-
PM+WAH).

Further experimentation and analysis has not supported this
hypothesis. To investigate, we trained AQ11 and AQ11-PM on
each target concept until both attained 100% accuracy. We then
switched to the next target concept. The plots of predictive
accuracy from this experiment were similar to those presented
in Figure 3, an outcome that does not support our hypothesis.

We gathered further evidence by plotting only the runs in
which AQ11 achieved 100% on the second target concept. If
our hypothesis is correct, then for these runs, AQ11 should
perform worse than AQ11-PM on the third concept, but again,
this was not the case. Presently, we are unsure why AQ11
consistently outperforms AQ11-PM on the third target concept.
The implementations of these learners are slightly different, so
we plan to examine the effects of these variations.

Naturally, the behavior of all of these systems, like most
learners, is governed by a set of parameters. Determining such
parameters for the AQ systems was a relatively easy exercise,
but we were surprised at how sensitive the WAH was to its
parameters. For instance, slight changes to the threshold for
high coverage (hc) led to poor performance on the second
concept. We determined these parameters manually, so it is
possible that we could have eventually found parameters such
that AQ11-PM+WAH outperforms AQ11 on the third STAGGER

concept. An arduous task, we have begun investigating more
principled ways of setting these parameters, such as greedy
search and reinforcement learning [34]. Indeed, as we have
shown elsewhere, learning algorithms can outperform carefully
handcrafted heuristics [35]. Finally, since AQ11-PM does not
necessarily maintain a consecutive sequence of examples, a
different type of WAH may also be in order.



V. CONCLUSION

In this paper, we evaluated AQ11-PM+WAH, an incremental
rule learner with partial instance memory that uses a heuristic
to adjust dynamically the window over which it retains ex-
amples. We showed empirically using the STAGGER Concepts
that the new method performed as well as or better than similar
methods designed for this task. Our method is one of a class of
algorithms that store a portion of the examples from the input
stream. Researchers have shown that these methods are well-
suited for domains in which concepts change or drift, such
as computer security, calendar scheduling, and intelligent user
interfaces. We hope that this and future work will lead to more
general and robust learning algorithms for these applications.

ACKNOWLEDGMENT

This research was conducted in the Department of Com-
puter Science at Georgetown University. The author thanks
Matthew Merzbacher for suggesting experiments for assessing
differences in performance between AQ11 and AQ11-PM, and
Tom Torsney-Weir and the anonymous reviewers for helpful
comments on earlier drafts of the paper.

REFERENCES

[1] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York,
NY: ACM Press, 2001, pp. 97–106.

[2] M. Maloof, “Progressive partial memory learning,” Ph.D. dissertation,
School of Information Technology and Engineering, George Mason
University, Fairfax, VA, 1996.

[3] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine Learning, vol. 23, pp. 69–101, 1996.

[4] M. Maloof and R. Michalski, “Selecting examples for partial memory
learning,” Machine Learning, vol. 41, pp. 27–52, 2000.

[5] J. Schlimmer and R. Granger, “Beyond incremental processing: Tracking
concept drift,” in Proceedings of the Fifth National Conference on
Artificial Intelligence. Menlo Park, CA: AAAI Press, 1986, pp. 502–
507.

[6] G. Gupta, “Modeling customer dynamics using motion estimation in
a value-based cluster space for large retail data-sets,” Master’s thesis,
Department of Electrical and Computer Engineering, University of
Texas, Austin, 2000.

[7] A. Blum, “Empirical support for Winnow and Weighted-Majority algo-
rithms: Results on a calendar scheduling domain,” Machine Learning,
vol. 26, pp. 5–23, 1997.

[8] M. Maybury and W. Wahlster, Eds., Readings in intelligent user inter-
faces. San Francisco, CA: Morgan Kaufmann, 1998.

[9] G. Widmer, “Tracking context changes through meta-learning,” Machine
Learning, vol. 27, pp. 259–286, 1997.

[10] M. Maloof and R. Michalski, “Incremental learning with partial instance
memory,” in Foundations of intelligent systems, ser. Lecture Notes in
Artificial Intelligence. Berlin: Springer-Verlag, 2002, vol. 2366, pp.
16–27.

[11] ——, “A method for partial-memory incremental learning and its appli-
cation to computer intrusion detection,” in Proceedings of the Seventh
IEEE International Conference on Tools with Artificial Intelligence. Los
Alamitos, CA: IEEE Press, 1995, pp. 392–397.

[12] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial Intelli-
gence Review, vol. 13, no. 1, pp. 3–54, 1999.

[13] J. Quinlan, C4.5: Programs for machine learning. San Francisco, CA:
Morgan Kaufmann, 1993.

[14] P. Langley, W. Iba, and K. Thompson, “An analysis of Bayesian
classifiers,” in Proceedings of the Tenth National Conference on Artificial
Intelligence. Menlo Park, CA: AAAI Press, 1992, pp. 223–228.

[15] C. Bishop, Neural networks for pattern recognition. Oxford: Clarendon
Press, 1995.

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[17] R. Michalski, “On the quasi-minimal solution of the general covering
problem,” in Proceedings of the Fifth International Symposium on
Information Processing, vol. A3, 1969, pp. 125–128.

[18] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine
Learning, vol. 3, pp. 261–284, 1989.

[19] J. Fürnkranz and G. Widmer, “Incremental reduced error pruning,”
in Proceedings of the Eleventh International Conference on Machine
Learning. San Francisco, CA: Morgan Kaufmann, 1994, pp. 70–77.

[20] W. Cohen, “Fast effective rule induction,” in Proceedings of the Twelfth
International Conference on Machine Learning. San Francisco, CA:
Morgan Kaufmann, 1995, pp. 115–123.

[21] R. Michalski, “Pattern recognition as rule-guided inductive inference,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2,
no. 4, pp. 349–361, 1980.

[22] ——, “A theory and methodology of inductive learning,” in Machine
Learning: An Artificial Intelligence Approach, R. Michalski, J. Car-
bonell, and T. Mitchell, Eds. San Francisco, CA: Morgan Kaufmann,
1983, vol. 1, pp. 83–134.

[23] R. Michalski and J. Larson, “Incremental generation of VL1 hypotheses:
The underlying methodology and the description of program AQ11,” De-
partment of Computer Science, University of Illinois, Urbana, Technical
Report UIUCDCS-F-83-905, 1983.

[24] W. Cohen, “Learning rules that classify e-mail,” in Machine learning
in information access: Papers from the 1996 AAAI Spring Symposium.
Menlo Park, CA: AAAI Press, 1996, pp. 18–25, Technical Report SS-
96-05.

[25] T. Mitchell, “Machine learning and data mining,” Communications of
the ACM, vol. 42, no. 11, pp. 30–36, Nov. 1999.

[26] M. Maloof, “An initial study of an adaptive hierarchical vision system,”
in Proceedings of the Seventeenth International Conference on Machine
Learning. San Francisco, CA: Morgan Kaufmann, 2000, pp. 567–573.

[27] R. Reinke and R. Michalski, “Incremental learning of concept descrip-
tions: A method and experimental results,” in Machine Intelligence 11,
J. Hayes, D. Michie, and J. Richards, Eds. Oxford: Clarendon Press,
1988, pp. 263–288.

[28] P. Utgoff, “ID5: An incremental ID3,” in Proceedings of the Fifth
International Conference on Machine Learning. San Francisco, CA:
Morgan Kaufmann, 1988, pp. 107–120.

[29] P. Utgoff, N. Berkman, and J. Clouse, “Decision tree induction based on
efficient tree restructuring,” Machine Learning, vol. 29, pp. 5–44, 1997.

[30] A. Kuh, T. Petsche, and R. Rivest, “Learning time-varying concepts,” in
Advances in Neural Information Processing Systems 3. San Francisco,
CA: Morgan Kaufmann, 1991, vol. 3, pp. 183–189.

[31] J. Case, S. Jain, S. Kaufmann, and A. Sharma, “Predictive learning
models for concept drift,” Theoretical Computer Science, vol. 268, no. 2,
pp. 323–349, 2001.

[32] M. Black and R. Hickey, “Classification of customer call data in the
presence of concept drift and noise,” in Soft-Ware 2002: Computing in
an Imperfect World, ser. Lecture Notes in Computer Science, 2002, vol.
2311, pp. 74–87.

[33] D. Aha, D. Kibler, and M. Albert, “Instance-based learning algorithms,”
Machine Learning, vol. 6, pp. 37–66, 1991.

[34] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285,
1996.

[35] M. Maloof, P. Langley, T. Binford, and R. Nevatia, “Generalizing over
aspect and location for rooftop detection,” in Proceedings of the Fourth
IEEE Workshop on Applications of Computer Vision (WACV ’98). Los
Alamitos, CA: IEEE Press, 1998, pp. 194–199.


