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Abstract

ROC analysis is being used with greater frequency as an
evaluation methodology in machine learning and pattern
recognition. Researchers have usedANOVA to determine
if the results from such analysis are statistically significant.
Yet, in the medical decision making community, the prevail-
ing method isLABMRMC . Although this latter method uses
ANOVA , before doing so, it applies the Jackknife method
to account for case-sample variance. To determine whether
these two tests make the same decisions regarding statistical
significance, we conducted a Monte Carlo simulation us-
ing several problems derived from Gaussian distributions,
three machine-learning algorithms,ROC analysis,ANOVA ,
and LABMRMC . Results suggest that the decisions these
tests make are not the same, even for simple problems. Fur-
thermore, the larger issue is that sinceANOVA does not ac-
count for case-sample variance, one cannot generalize ex-
perimental results to the population from which the data
were drawn.

1. Introduction

Receiver Operating Characteristic (ROC) analysis [16]
has proven invaluable for empirical studies of machine-
learning algorithms (e.g., [14, 4, 18, 9]). Researchers have
typically used analysis of variance, orANOVA [15], to de-
termine whether results fromROC analysis are statistically
significant [4, 8]. Yet, in the medical decision making com-
munity, which has a long tradition of conducting research
on ROC analysis, the prevailing method in the context of
multiple readers and multiple cases (MRMC) is LABMRMC

[5]. Although LABMRMC conducts an analysis of variance,
before doing so, it uses the Jackknife method [7] to account
for the case-sample (i.e.,test-sample) variance. Researchers
use LABMRMC to evaluate human performance on detec-
tion tasks, so it is not clear whether the additional statistical
machinery present inLABMRMC is necessary for relatively
simplistic machine decision makers.

To investigate this issue, we conducted a Monte Carlo
experiment using several problems derived from Gaussian
distributions, three machine-learning algorithms,ROC anal-
ysis, ANOVA , and LABMRMC . Results suggest that these
tests do not make the same decisions regarding statistical
significance, an outcome that has important ramifications
for researchers designing and conducting experiments with
learning algorithms.

This paper makes two contributions. First, we describe
an experimental design and analysis usingLABMRMC that
takes into account more sources of variance and may pro-
vide greater statistical power than popular designs. Sec-
ond, we present empirical results suggesting thatANOVA

and LABMRMC make different decisions about statistical
significance.

In the next section, we detail the differences between
ANOVA andLABMRMC , and lay the foundation for our em-
pirical study, which we describe in Section 3. After present-
ing our experimental results, we discuss implications and
then conclude with caveats and directions for future work.

2. Background

Recently, researchers have begun usingROC analysis
with greater frequency to evaluate learning algorithms,
which entails measuring performance at several different
decision thresholds and plotting the true-positive and false-
positive rates. One way to obtain a single measure of per-
formance,Az, is to approximate the area under the curve
formed by these points using the trapezoid rule. This mea-
sure is useful for comparing the performance of classifiers
when oneROC curve dominates another. Others have pro-
posed analyses for situations in which curves intersect [11]
and in which only a portion of the curve is of interest [17].
Since we evaluate classifiers at different decision thresh-
olds, ROC analysis is a method of evaluating performance
that is unconfounded by unequal but unknown costs of mis-
classification error, by skew in the data set, and by differ-
ences in inductive bias amongst the learning methods.
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Researchers often use ten-fold cross validation to esti-
mate performance of algorithms on a task. However, this
design introduces a source of correlation since one uses ex-
amples for training in one trial and for testing in another.
Thus, we are suggesting that one should partition the data
into, say, eleven sets, train using each of the ten partitions,
and test all classifiers using the eleventh. As we have argued
elsewhere [1], this is isomorphic to the multiple-reader,
multiple-case design in medical imaging.

Once conducting an experiment in this manner and pro-
ducing a set of areas for two or more learning methods, we
might use a test, like Mixed, Two-wayANOVA [15], to de-
termine whether results are statistically significant. In this
case, the linear model for the performance metricAz is

Aijnz = µi + tj + (at)ij + zijn,

whereµi is the overall average effect of theith algorithm,
tj is the effect of thejth training set,(at)ij is an interac-
tion term for theith algorithm and thejth training set, and
zijn is the random effect due to experimental error of the
nth repeated trial. Here, we will assume thatn = 1, so
zijn = 0. In this model, the algorithms are fixed effects and
the training sets are random effects, but there is no term to
account for the variance due to the cases in the test set. Con-
sequently, statistically significant results generalize only to
the population of training sets, not to new examples drawn
from the population. Note that generalizing to new test sets
is not the same as generalizing to new examples.

To generalize to new examples, the analysis must ac-
count for thecase-sample variance, a factor present in
Swets and Pickett’s model [16]. One possible way to es-
timate this variance is to split the data set into subsamples,
conduct experiments using each subsample, much like one
does traditionally for machine-learning experiments, and
use Mixed, Three-wayANOVA [15]. Problems include the
ad hoc nature by which one splits the data, which leads to
unreliable estimates [7], the inability to obtain a maximum-
likelihood estimate because of a small sample [5], and as
discussed previously, correlation from using an example for
training and for testing, which violates the assumption of
ANOVA that random effects are uncorrelated [15]. Ideally,
we want to draw new random samples from the population
for the test sets, but we cannot because of, say, the possibil-
ity and expense of collecting such data.

The most general mathematical model for this experi-
mental design is [3]:

Aijknz = µi + tj + ck + (at)ij + (ac)ik
+(tc)jk + (atc)ijk + zijkn,

whereµi is the overall average effect of theith algorithm,
tj is the effect of thejth training set,ck is the effect of the
kth test case (if it were available),(at)ij is an interaction

term for theith algorithm and thejth training set,(ac)ik
is an interaction term for theith algorithm and thekth test
case,(tc)jk is an interaction term for thejth training set
and thekth test case,(atc)ijk is an interaction term for the
ith algorithm, thejth training set, and thekth test case, and
zijkn is the random effect due to experimental error of the
nth random trial. Since we are assumingn = 1, zijkn = 0.

LABMRMC [5] uses the Jackknife method [7] on case rat-
ings to estimate pseudo-values for areas under a set ofROC

curves, thereby accounting for case-sample variance; it then
appliesANOVA to estimate significance. Roe and Metz [13]
validated this method through computer simulation, and
showed it to be conservative in its decisions for small sam-
ples. Beiden, Wagner, and Campbell [3] assume this same
linear model, but conduct a family of bootstrap experiments
to estimate nonparametrically the model’s components of
variance.

Of concern is whetherANOVA andLABMRMC make the
same decisions about statistical significance of experiments
with machine-learning algorithms. To address this issue,
in the next section, we describe Monte Carlo experiments
designed to compare these two statistical tests.

3. Description of Experiments

To investigate whetherANOVA and LABMRMC make
the same decisions regarding statistical significance, in-
troduced in the previous section, we conducted a Monte
Carlo experiment using problems derived from two nine-
dimensional normal distributions and using three learning
algorithms: naive Bayes, nearest neighbor, andk-nearest
neighbor (k-NN), for k = 9. With these, we selected four
sample sizes (n = 100, 200, 300, 400) and varied the diffi-
culty of the detection task, as measured byd′.

Discriminability, ord′, which is equivalent to the Maha-
lanobis distance, is a measure of the separation between two
Gaussian distributions:

(d′)2 = (µ0 − µ1)tΣ−1(µ0 − µ1).

In our experiments, withµ0 = 0 andµ1 = 1, we setσij =
0, for i 6= j, and setσii such thatd′ = 1.0, 1.33, and1.66.

For eachd′ andn, we generated ten training sets by ran-
domly drawingn examples fromN(µ0,σ

2
0) for the nega-

tive class andn examples fromN(µ1,σ
2
1) for the positive

class. Similarly, we generated a single test set by drawing
randomly1

4n samples from each distribution.
For each of the ten training sets, we applied implementa-

tions of naive Bayes, nearest neighbor, andk-NN, for k = 9,
and used the resulting classifiers to predict the class of the
cases in the test set. In the first experimental condition, we
evaluated the decisions of the algorithms at different thresh-
olds, thereby producing a set of true-positive and false-
positive rates. Using the trapezoid rule, we computed the
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Table 1. The number of times ANOVA (A) and
LABMRMC (L) determined that results were sta-
tistically significant at p < 0.05.

d′ = 1.0 d′ = 1.33 d′ = 1.66
n A L A L A L

100 897 686 965 754 981 780
200 980 954 997 956 998 950
300 995 951 1000 958 999 944
400 999 935 999 935 999 941

Table 2. The number of times ANOVA and
LABMRMC agreed ( =) or disagreed ( 6=) on
whether results were statistically significant
at p < 0.05.

d′ = 1.0 d′ = 1.33 d′ = 1.66
n = 6= = 6= = 6=

100 617 383 724 275 765 235
200 934 66 953 47 948 52
300 947 52 958 42 944 55
400 935 64 935 64 941 58

area under theROC curve implied by each set of points, a
process resulting in ten areas. For the three algorithms and
their ten performance measures, we usedANOVA to deter-
mine if the differences among the means were statistically
significant atp < 0.05.

In the second experimental condition, we applied the al-
gorithms to each of the training sets and used the resulting
classifiers torate each case in the test set.LABMRMC re-
quires such ratings, so instead of producing a 0-1 decision
for cases, we modified each algorithm to produce a numeric
rating. For naive Bayes, we used the posterior probability
of the negative class given the instance. For nearest neigh-
bor, we used the difference of the Euclidean distances from
the query to the nearest neighbors of the negative and posi-
tive classes. Fork-NN, we used the number of votes for the
negative class. For the three algorithms and their ten sets
of ratings, we usedLABMRMC to determine if the differ-
ences among the means were statistically significant, also
atp < 0.05.

We repeated this process 1000 times, tabulating the num-
ber of timesANOVA and LABMRMC rejected the null hy-
pothesis, and whether the two tests agreed or disagreed
about the statistical significance of the outcome, as we will
discuss in the next section.

4. Experimental Results and Analysis

Table 1 shows the number of timesANOVA and
LABMRMC determined that results were statistically signif-
icant atp < 0.05. If comparing two identical classifiers and
rejecting the null hypothesis at a level ofp < 0.05, then
we would expect a test in the limit to reject the null hy-
pothesis five percent of the time. When comparing different
algorithms, especially for small samples, we expect a test to
reject the null hypothesis more frequently.

Yet, as we can see,ANOVA appears to be overly opti-
mistic, especially for the higher values ofd′ and for samples
sizes greater than 100.LABMRMC was certainly more con-
servative thanANOVA , but it was probably not pessimistic,
given thatLABMRMC has been validated [13].

What we cannot infer from Table 1 is the number of
timesANOVA andLABMRMC agreed or disagreed when re-
jecting the null hypothesis, and Table 2 reports this infor-
mation. Ideally, these two tests would agree and disagree
perfectly, but sinceANOVA appears to be overly optimistic,
this can not be the case. At the very least, we would hope
that wheneverLABMRMC fails to reject the null hypothesis
thatANOVA also fails to reject it. This also is not the case.

By comparing the results in Table 1 and Table 2, we
can see that forn = 100, there will be cases for which
LABMRMC rejects the null hypothesis andANOVA fails to
reject it, and vice versa. It is not untilANOVA fails to re-
ject the null hypothesis for almost all Monte Carlo trials
that the disagreements between the tests consist of those
cases for whichLABMRMC rejects the null hypothesis and
ANOVA fails to reject, an outcome that has several implica-
tions, which we discuss further in the next section.

5. Discussion of Results

One immediate implication of this study is that the use of
ANOVA for the experimental design we considered may lead
to overly optimistic conclusions when determining the sig-
nificance of means of areas underROC curves. Researchers
in the medical decision making community have investi-
gated this issue extensively, but this work appears to be
largely unknown in the communities that evaluate machine-
learning algorithms.

Variance contributes to error. IfANOVA does not take
into account a strong source of variance, then it follows that
it will be overly optimistic when rejecting the null hypoth-
esis. Our study suggests that case-sample variance is such
a source in machine-learning experiments.LABMRMC ac-
counts for this variance using the Jackknife method.

There may be other experimental designs and other anal-
yses of variance that properly estimate or account for case-
sample variance. Indeed, machine-learning researchers
are often in the comfortable position of having too many
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cases—a luxury our colleagues in the medical community
rarely enjoy—and for these occasions, traditional experi-
mental designs and analyses may adequately take into ac-
count case-sample variance.

However, without properly accounting for the case-
sample variance, thereby taking into account only the vari-
ance due to the random subsampling of the data set, then
we can generalize results, if significant, only to the popula-
tion of random subsamples of the data set. We can make no
inferences about results we might obtain if we had new ex-
amples drawn from the population [10], which is precisely
the inference we want to make.

6. Conclusion

We have reported the outcome of a Monte Carlo simu-
lation designed to compareANOVA andLABMRMC for de-
termining statistical significance of results from machine-
learning experiments. SinceANOVA does not estimate case-
sample variance, it tended to be overly optimistic, especially
for large samples.LABMRMC , on the other hand, accounts
for case-sample variance using Jackknife, requires a simple
experimental design, and lets us generalize to the popula-
tion from which test cases were drawn.

For the future, we hope to report results for non-normal
distributions. We have preliminary results for distributions
formed with mixtures of Gaussians that vary in the degree
of overlap between the distributions corresponding to the
negative and positive classes. For these and similar prob-
lems, we also have results for other learning methods, such
ask-NN for other values ofk, quadratic discriminant, and
C4.5 [12].

Related to this study is our work on a general framework
for understanding the uncertainty of accuracy measures of
competing classifiers [1]. For theMRMC paradigm, we have
conducted a Monte Carlo simulation similar to that reported
in this paper, but used bootstrap experiments to estimate the
components of variance of the general linear model [3]. Re-
sults support Fukunaga’s theory of the effect of design sam-
ples [6] and contradict conventional wisdom about the rela-
tive contribution of sources of variance to error. We hope to
report the details of this study soon [2].
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