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Abstract—In this paper, we describe a method for learning shape descriptions of objects in x-ray
images. The descriptions are induced from shape examples using the AQ15c inductive learning
system.  The method has been experimentally compared to k-nearest neighbor, a statistical pattern
recognition technique, the C4.5 decision tree learning program, and a multilayer feed-forward
neural network.  Experimental results demonstrate strong advantages of the AQ methodology over
the other methods.  Specifically, the method has higher predictive accuracy and faster learning and
recognition rates.  AQ’s representation language, VL1, was better suited for this problem, which
can be seen by examining the empirical results and the learned rules.  The method was applied to
the problem of detecting blasting caps in x-ray images of luggage.  An intelligent system
performing this detection task can be used to assist airport security personnel with luggage
screening.

1. INTRODUCTION

Despite many efforts, the problem of shape learning and recognition remains open.  The goal of
our research is to develop a methodology for shape learning and recognition, and apply it to a
variety of practical problems.  In this paper, we are concerned with the recognition of blasting caps
in x-ray images under varying perceptual conditions.  Task-oriented segmentation and event
extraction are used to isolate objects of interest in images and to form a set of training examples in a
predefined representation space.  The training examples are passed to a learning system that
produces general descriptions of the visual concepts.

The learned concept descriptions are then validated using testing examples of blasting caps and
non-blasting caps, prepared a priori by a human operator.  After validation, the learned
descriptions are ready to be used for classifying unseen objects into blasting caps and other
objects.  The classification process uses a flexible matching method that determines a degree of
match between an object to be classified and the obtained concept descriptions, rather than a strictly
logical yes-or-no match.

This research intends to both solve an important practical problem and make a contribution to
the methodology of vision through learning.  An intelligent system capable of identifying blasting
caps in x-ray images could assist airport security personnel with luggage screening.

The described method uses the AQ15c inductive rule learning system (Wnek, Kaufman,
Bloedorn, & Michalski, 1995) for generating blasting cap descriptions from training examples.  To
evaluate the method, the descriptions obtained by the AQ15c learning system and other systems
were compared in terms of predictive accuracy and the speed of learning and recognition.
Experimental results demonstrate strong advantages of the method over k-nearest neighbor (Weiss
& Kulikowski, 1992), a statistical pattern recognition technique, C4.5 (Quinlan, 1993), a decision
tree learning method, and a multilayer feed-forward neural network (Zurada, 1992).  AQ’s
representation language was better suited for this problem than the representation languages of the
other methods.  This can be seen by examining the empirical results and the learned concept
descriptions.  Other experiments using this methodology for the problem of blasting cap detection
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have been reported by Maloof and Michalski (1994), Bala, Michalski, and Pachowicz (1994),
Maloof and Michalski (1995), and Maloof, Duric, Michalski, and Rosenfeld (1996).

The next section provides background on the AQ15c learning system and flexible matching,
and reviews relevant applications of machine learning techniques to problems in machine vision.
Section 3 describes the method, while section 4 details the obtained results.  Section 5 discusses
the contribution and significance of the results and outlines plans for future research.

2. BACKGROUND

An emerging new research area, Machine Vision through Learning (MVL), investigates the
applicability of modern machine learning methods to problems in machine vision and the
development of vision systems with learning capabilities (Michalski, Rosenfeld, and Aloimonos,
1994).  From the computer vision standpoint, research in this area may help simplify the
development of vision systems and increase their flexibility and adaptability.  From the machine
learning standpoint, this area will require the development of new learning methodologies capable
of dealing with the complexities of visual perception.

Potentially, machine learning methods can be used for a variety of computer vision problems.
This paper concentrates on the application of machine learning techniques to one specific computer
vision problem: the acquisition and use of shape descriptions for object recognition.

2.1. The AQ Learning Approach

In the AQ learning approach that is used in this study, a visual concept description is in the form of
VL 1 decision rules (Michalski, 1972).  Each rule is a conjunction of relational statements, each
involving typically (but not necessarily) one attribute.  The description is induced from a set of
training examples and problem domain knowledge.  Each training example is a vector of values of
multitype discrete attributes (i.e., nominal, linear, or structured) with an indication of the decision
class (visual concept) to which it belongs.

Advantages of this approach include relatively high speed of learning, the possibility of parallel
rule execution (and thus high speed object recognition), ease of introducing and utilizing domain
knowledge, the ability to work with large numbers of attributes and to detect irrelevant attributes,
high understandability of the learned concept descriptions, and the ability to generate descriptions
of different types and at different levels of generalization.  Disadvantages include the need for
quantizing continuous attributes, and the limited power of the descriptive language (i.e., the use of
axis-parallel discriminating surfaces).  These disadvantages can be reduced by introducing flexible
concept matching techniques which create more complex, nonaxis parallel concept boundaries, and
constructive induction which creates derived attributes that represent complex representation space
transformations.

In this study, we use the inductive learning system AQ15c, in which concept examples,
domain knowledge, and concept descriptions are expressed using an attributional representation
language, called Variable-Valued Logic 1, or VL1 (Michalski, 1972).  To make this paper self-
contained, we begin by briefly characterizing the description language.  VL1 decision rules, used to
represent concept examples, domain knowledge and concept descriptions, are of the form:

Di  <:: Cj

where

Di is the decision part of the rule, and is typically in the form of one elementary statement that
assigns a value to a decision variable,

Cj is the condition part of the rule stated in the form of a conjunction of elementary statements
(such a conjunction is also called a complex), and

<:: is the decision  assignment operator  (logically equivalent  to implication).
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An elementary statement (also called an elementary condition or selector)  is of the form:

‘[’ < referee> <relation> <referent> ‘]’

where

<referee> is a member of the finite set of attributes,
<relation> is a relational operator (=, <>, >, <, >=, <=), and
<referent> is a subset of the domain of <referee>.

For example, [length > 2mm] and [color = red ∨  blue] are elementary conditions.  An elementary
condition is satisfied by an object if the value of the attribute stated in the condition for this object
satisfies the <relation> between the <referee> and the <referent>.

In a crisp or strict matching convention, a given decision class is assigned to an object if the
properties of the object satisfy the condition part of the rule.  In a flexible matching convention, the
rule is satisfied if the degree of match between an object and the rule is above a threshold of
acceptability and higher than the degree of match between the object and other candidate rules.

In the default parameter setting, AQ15c creates maximally general hypotheses (a ruleset) that
describe all positive examples and no negative examples.  Negative examples of a given concept
either are explicitly labeled as such, or in the case of multiple concept learning, are the positive
examples of all other concepts to be learned.

Finding a hypothesis that contains the minimum number of rules is a form of the general set
covering problem (Michalski, 1969).  Since this problem is NP-hard, the AQ algorithm (that
underlies AQ15c) solves this problem in a quasi-optimal manner, that is, finds a solution that is
optimal or near-optimal.

Briefly, the AQ algorithm randomly selects one of the positive training examples (referred to as
the seed) and builds a set of alternative maximally general descriptions of this seed (referred to as
the bounded star).  A domain-dependent preference criterion is used to select the most preferable
rules from the bounded star.  If the current description (the set of rules obtained so far) covers all
positive examples, then the algorithm stops; otherwise, a new seed is selected from the uncovered
positive examples and the process repeats.

The AQ algorithm guarantees completeness and consistency of learned concepts.
Completeness means that a learned concept covers all positive examples.  Consistency means that a
learned concept does not cover any negative examples.  When examples are noisy, however, the
system generates hypotheses that are partially incomplete or inconsistent, or both.
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FIGURE 1. An illustration of decision regions, complexes, and examples.
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2.2. Recognition Through Flexible Matching

After learning and validation, generated concept descriptions are incorporated into a system and can
be deployed for concept recognition.  Under a strict matching convention, if the example’s attribute
values satisfy the condition part of a rule, then the decision class associated with the rule is
assigned.

Conceptually, rules carve out decision regions in a representation (event) space, defined by the
attributes and their domains chosen to characterize objects.  Figure 1 illustrates such decision
regions.  The decision region D1 consists of three complexes: C1, C2, and C3 (illustrated by
overlapping rectangles), while the decision region D2 consists of two complexes: C4 and C5.

If an unclassified example, such as example e1 in Figure 1, falls within one of the decision
regions, it is assigned the decision class associated with that region.  Thus, example e1 would be
assigned to decision class D1.  If an example does not fall within any decision region, as is the case
with example e2, then using a strict matching mode, no decision would be assigned.  Using a
flexible matching mode, a degree of match between the example and all decision regions is
computed, and the best match above a threshold of acceptability indicates the decision class.
Flexible matching thus helps alleviate the brittleness associated with rule-based reasoning systems.

Several flexible matching schemes exist to calculate the degree of match between examples and
concept descriptions.  The method employed here works as follows (Wnek et al., 1995).  For a
decision region Di consisting of n complexes Cj, the degree of match σi for the example e2 is given
by:

σ i =

α ij

βij

,  for j =1

σ i −1 +
α ij

βij

− σ i −1

α ij

βij

,  for j = 2..n






î



(1)

where

αij is the number of conditions in complex Cj satisfied by example e2, and

βij  is the total number of conditions in complex Cj.

Equation 1 yields a real number in the range [0, 1], where 0 represents no match and 1 represents
complete match.

In summary, the advantages of the AQ15c inductive learning system over the other methods
include:

• can learn comprehensible concept descriptions,
• uses crisp or flexible matching techniques for recognition,
• learns different types of rules (discriminant or characteristic),
• learns different types of covers (disjoint, intersecting, or ordered),
• allows problem-dependent utility measures for attributes,
• allows problem-dependent measures of description quality, and
• guarantees completeness and consistency.

2.3. Relevant Past Work

There has been a number of papers on the topic of learning descriptions of shape using machine
learning techniques.  For example, Shepherd (1983) used a decision tree learning algorithm to
classify shapes of chocolates for an industrial vision system. Using feature vectors to represent
examples, Shepherd compared a decision tree algorithm, k-nearest neighbor (k-nn), and a
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minimum distance classifier using classification accuracy.  Classification accuracies for these
learning methods were comparable, with the minimum distance classifier producing the highest
accuracy of 82%.

Connell and Brady (1987) describe a shape learning component using a semantic network
representation.  The vision system builds semantic networks from gray-scale images which are
generalized using a modified version of Winston’s (1984) ANALOGY program.  Generalized
representations are subsequently used for object recognition.  The system was used to learn shapes
of commercial aircraft and of three types of hammers.  Experimental results were not presented.

Cromwell and Kak (1991) characterized object shapes using feature vectors for images
containing electrical components such as resistors, capacitors, and transistors.  Concepts were
learned by applying inductive generalization rules and selecting the concept that covers the most
examples from the training set.  Their induction methodology was based on Michalski’s (1980).
The average classification accuracy for their system was 72%.  No comparisons were made to
other learning systems.

Segen (1994) uses a multistrategy learning approach for real-time recognition of hand gestures.
Shape is represented by a hierarchical graph representation that captures local curvature, distance
between features and angles between features.  The representation is invariant to planar rotation
and translation.  These structural features are induced using an unsupervised constructive induction
technique.  Classified structural features are then generalized using a supervised learning algorithm
into a graph model that consists of probabilities for structural features of a shape class.  Reported
errors rates were between 5% and 10%.  Most errors were reported as unknown gestures rather
than misclassifications.

Cho and Dunn (1994) introduce a property-based learning algorithm for learning shape in
which concepts are represented as lists, or conjunctions, of local properties.  Shape is
approximated by a series of line segments.  Local spatial properties are computed between pairs of
line segments and are invariant to planar translation, rotation and scale.  Reinforcement learning
updates weights associated with property lists, while forgetting mechanisms remove concepts of
low weight.  Experimental results are presented for learning tool shapes and hand gestures, for
which the method achieved 92% and 96% predictive accuracy.  No comparisons were made to
other learning methods.
 The foundations for applying AQ learning to recognition problems in vision were laid by
Michalski (1972, 1973).  In those seminal papers, the Multilevel Logical Template (MLT)
methodology used the AQ algorithm to learn relationships between image objects and concepts for
discriminating between classes of images (textures and simple structures).  Windowing operators
were used to extract low-level features from texture samples, which were presented to the AQ
learning algorithm.  These ideas were further developed by Channic (1985), who used convolution
operators (e.g., the Kirsch operator) in conjunction with windowing operators for feature
extraction.  Channic proposed learning from sequences of images and used iterative and
incremental learning for inducing multilevel texture descriptions from ultrasound images of
laminated objects.  Pachowicz and Bala (1991) used the MLT methodology with a modified set of
Laws’ masks for texture feature extraction and applied various description optimization techniques
(e.g., the SG-TRUNC method (Zhang & Michalski, 1989)) for alleviating problems encountered
by the introduction of noise.  Bala (1993) also introduced and applied to texture recognition
methods for concept optimization (AQ-GA), and learning a large number of classes (PRAX).

The initial MLT methodology has been extended recently into the Multilevel Image Sampling
and Transformation (MIST) methodology.  One of its applications is to the problem of segmenting
a natural scene into classes, such as sky, trees, grass, and the like (Michalski, Zhang, Maloof, &
Bloedorn, 1996).  In this study, three learning techniques were compared: AQ15c (Wnek et al.,
1995), a backpropagation neural network (Zurada, 1992), and AQ-NN (Bala et al., 1994).  AQ-
NN is a multistrategy technique in which the AQ15c inductive learning system is used to structure
a neural network architecture using decision rules.  A secondary learning phase is used to adjust
the network’s weights, which results in higher predictive accuracy than the learned rules alone and
recognition rates often faster than a neural network.  Features, such as hue, intensity, vertical and
horizontal line operators, were extracted from a 10x10 pixel window moved over user-designated
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training areas.  AQ15c achieved a recognition rate of 94%, while both the neural network and AQ-
NN achieved 100% on unseen testing data.

Maloof and Michalski (1994) used the MLT methodology for learning shape descriptions for
discriminating among x-rays of blasting caps from an image database.  14 intensity and shape
features were used to represent three characteristic blobs of x-rayed blasting caps.  Experimental
comparisons were made between AQ15c, a neural network, and k-nn, which achieved predictive
accuracy rates of 94%, 96%, and 69%, respectively.

This initial study was followed by experiments using x-rayed luggage containing blasting caps
and various forms of clutter, such as shoes, bolts, pens, and calculators.  Five shape features
invariant to planar rotation and translation were used to represent blasting cap and non-blasting cap
objects.  Comparisons were again made between AQ15c, a neural network, and k-nn, which
achieved predictive accuracy rates of 95%, 79%, and 69%, respectively, as reported in (Maloof &
Michalski, 1995).

The work presented here is an extension of our previous work in several ways.  We consider
an additional learning method, C4.5 (Quinlan, 1993), which is a symbolic inductive learning
system, like AQ15c, but learns a different concept representation, namely decision trees.  The
inclusion of this method provides a broad comparison of learning techniques.  We also provide a
detailed analysis of why AQ15c performed better than other methods on this problem.

Additional work is reported in (Maloof et al., 1996) in which inductive learning is used to
acquire object functionality.  Recognition proceeds in a top-down and bottom-up manner.  In a
bottom-up step, low intensity blobs are used as attention-catching devices and posit object
hypotheses.  A top-down step attempts to match learned local models to image characteristics
surrounding the blobs.  Positive and negative examples were represented using 25 intensity,
shape, and proximity features.  AQ15c achieved recognition rates of 84%.  No comparisions were
made to other learning methods.

Classification

Training Set Testing Set

Concepts

Images

Objects

Event Extraction

2.

1.

ROI Determination

Recognition

4.

Learning

3.

FIGURE 2. Basic steps of the shape learning and recognition methodology.
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3. METHODOLOGY

The symbolic learning methodology used here closely parallels Michalski’s (1973), Channic’s
(1985) and Bala’s (1993) proceeding through a four step process: (1) Region of Interest (ROI)
Determination, (2) Event Extraction, (3) Learning, and (4) Recognition (see Figure 2).  These
steps are described in the following subsections.

3.1. Determination of Regions of Interest (ROI)

The first step involves determining which image regions are of interest, i.e., likely contain blasting
caps.  For illustration, Figure 3 shows two sample images of luggage containing blasting caps.  In
the experiments, we used an image set consisting of 30 images.  The images were obtained by x-
raying luggage containing blasting caps, as it would be in an airport scenario: flat in relation to the
x-ray source, but rotated in the plane orthogonal to the x-ray source.

Blasting Caps

FIGURE 3. Sample x-ray images of luggage containing blasting caps.

Examples of airport luggage were constructed by placing different types of blasting caps at
different positions and orientations in the bag and adding other objects, such as shoes, calculators,
bolts, pens, and the like.  For this study, 5 of the original 30 images were selected.  The selected
images were of low to moderate complexity in terms of blasting cap positional variability, degree
of occlusion, and clutter.

Regions of interest were isolated and selected in the following manner:

1. Convolve image with 5x5 Gaussian
2. Convolve image with 5x5 Laplacian
3. Equalize Histogram
4. Threshold image at the mode of the pixel distribution
5. Select user-identified ROI or objects

Operations 1–4 yielded binary images, from which an expert selected 53 objects and divided into
two classes: blasting caps, containing 22 objects, and non-blasting caps, containing 31 objects.

3.2. Event Extraction

After ROI determination, image objects are described in terms of the attribute values defining the
representation space for learning.  The attributes included:
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1. Area:  Area of an object
2. Length: Length of the object’s perimeter
3. Major:  Length of the major axis of a fitted ellipse
4. Minor:  Length of the minor axis of a fitted ellipse
5. Compactness: Ratio between area and perimeter

Table 1 describes the representation space for this problem (the attributes and their ranges).

TABLE 1
Representation space for blasting caps

Attribute Possible Range
Area 37...675
Length 22.40...169.80
Major 8.04...58.35
Minor 3.39...25.72
Compactness 0.16...0.87

Values of the selected attributes were computed for the 53 regions identified in the ROI
determination phase.  Each object example was thus represented by a vector of real-valued
attributes, except for the Area attribute, which was integer-valued .

3.3. Learning

The AQ15c symbolic inductive learning system (Wnek et al., 1995) was used to learn descriptions
of shape from positive and negative training examples.  Since AQ15c operates on discrete
attributes, the real-valued attributes, such as Length and Major (Table 1), required discretization.
To further optimize the representation space, integer-valued attributes, like Area, can be projected
into a smaller range.  Such a process represents an abstraction operation on the representation
space, as defined by the Inferential Theory of Learning (Michalski, 1994).

Several techniques exist for discretizing real-valued attributes including equal-width-intervals
and equal-frequency-intervals (Kerber, 1992).  With equal-width-intervals, the real range is
divided into n equal-sized intervals and real values are mapped into the first n integers.  A problem
with this approach is that if the classification algorithm needs to discriminate between two real
values and these values are mapped into the same range, any basis for discrimination is destroyed.
In other words, the scaling procedure excessively abstracts the data.

Equal-frequency-intervals involves discretizing based on the frequency distribution of attribute
values over the real-valued range.  A problem associated with this technique is that a small group
of important outliers could be grouped with a larger cluster of attribute values.  Conversely, an
important grouping of attribute values could be divided and mapped into different intervals because
of outliers.  In both instances, the scaling procedure excessively abstracts the representation space.

The ChiMerge discretization algorithm (Kerber, 1992) uses the χ2 statistic to merge real and
integer attribute values into statistically relevant intervals.  In other words, the algorithm groups
and separates attribute values into intervals based on a statistical measure of the correlation between
attribute values and their associated class labels.

AQ15c, using the SCALE implementation (Bloedorn, Wnek, Michalski, & Kaufman, 1993) of
the ChiMerge algorithm (Kerber, 1992), discretized all attribute values into at least 5 intervals
using a 99% significance level.  The ChiMerge algorithm has the freedom to construct any number
of intervals; however, one of its parameters is a lower bound on number of intervals.  The
significance level determines how parsimonious ChiMerge behaves when grouping real-valued
attributes.  For higher significance levels (e.g., 99%), ChiMerge tends to construct a small number
of large intervals (Kerber, 1992).
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TABLE 2
Discretization of the attribute Major

Value Range of
Attribute Major

Abstracted
Attribute Value

8.03...13.50 0
13.51...14.72 1
14.73...22.49 2
22.50...23.03 3
23.04...26.94 4
26.95...38.29 5
38.30...58.35 6

Table 2 illustrates the discretization of the Major attribute by the ChiMerge method. Notice that
it partitioned attribute values into ranges of different widths (e.g., abstracted attribute values 1 and
2).  ChiMerge constructed discretization ranges, similar to those in Table 2, for each of the 5
attributes.

ROI determination, event extraction, and discretization produced 53 training examples divided
between two distinct classes: caps and noncaps.  Each training example consisted of 5 linear
multivalued attributes, ranging between 6 and 13 value levels, a result of the ChiMerge
discretization.  All attributes achieved 1.0 using the entropy (Quinlan, 1986) and PROMISE
(Baim, 1988) measures for attribute relevancy.

Preliminary experiments were conducted to establish learning parameters.  The best
performance resulted when AQ15c was set to generate characteristic rules, which are rules that
consist of all known attributes and attribute values for a class of objects (Michalski, 1983).  After
learning parameters were determined, they were held constant and additional experiments consisted
of 50 learning and recognition runs using a 2-fold cross-validation methodology (Weiss &
Kulikowski, 1992).  For each run, the complete set of preclassified training examples was divided
randomly and evenly into training and testing sets.  These sets were given to AQ15c, which
learned a set of decision rules from the training examples.  Figure 4 presents one of the hypotheses
learned by AQ15c.

The hypothesis in Figure 4 consists of two rules.  Each rule is annotated by two numbers: the
t-weight and the u-weight.  The t-weight indicates the total number of the positive training
examples the rule covers.  The u-weight indicates how many of those examples are covered only
by this rule (different rules can potentially overlap, therefore some examples maybe covered by
more than one rule).  These weights indicate the strength of rules.

Cap <:: [Area=1 v 3 v 5 v 7] &
[Length=9..11 v 13] &
[Major=5, 6] &
[Minor=0 v 2 v 5 v 6 v 8 v 10] &
[Compact=1..4]
(t-weight:8, u-weight:8)

Cap <:: [Area=1] & [Length=5 v 7] &
[Major=5] & [Minor=0 v 1] &
[Compact=3 v 4]
(t-weight:2, u-weight:2)

FIGURE 4. Example of a hypothesis induced by AQ15c.
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3.4. Recognition

For each run, following the learning step, the induced decision rules were used to classify the
examples in the testing set.  This produced a classification or recognition rate for the run.  Four
statistics were computed for each 50 run experiment: average recognition rate, best single
performance, and average learning and recognition times.  The average recognition rate for an
experiment is the average of the recognition rates for each of the 50 runs.  A 95% confidence
interval was also computed for the learning method.  The best single performance is the highest
classification rate achieved by the learner on any single run of an experiment.  The average learning
time is the average time spent learning a concept description from training examples for each of the
50 runs.  Finally, the average recognition time is the average time spent testing the concept on
testing examples for each of the 50 runs.  This testing and validation methodology was also used
for experiments involving other learning methods.  When testing examples using AQ15c, the
flexible matching scheme described in section 2.2 was used.

4. EXPERIMENTAL RESULTS

Four experiments were conducted using AQ15c, k-nn, C4.5, and a multilayer feed-forward neural
network, using the testing and validation method described above.  These learning methods were
compared using average classification accuracy, best single performance, and average learning and
recognition times.  Table 3 summarizes the experimental results.  The predictive accuracy results
are statistically significant at p < .01.  Figure 5 shows the learning curves for the four methods.
This graph indicates how the classification accuracy increases with respect to increasing amounts
of training data.

TABLE 3
Performance summary for classification techniques

Learning
Method

Average
Recognition
Accuracy*

Best
Single

Performance

Average
Learning

Time

Average
Recognition

Time
AQ15c 95.48±1.52% 100% 0.1 s 30 ms
C4.5 80.61±2.62% 96% 0.1 s 20 ms
ANN 75.2±2.46% 96% 37.5 s 4 ms
k-nn (k = 1) 70.88±1.84% 81% 0.05 s 20 ms
* p < .01

k-nn works by taking a testing example and finding its k closest neighbors in the representation
space using some distance measure.  Typically k is odd to prevent ties.  The class with the most
closest neighbors is assigned as the decision class for the testing example.  k-nn is an example of a
instance-based learning technique (Aha, Kibler, & Albert, 1991).  Preliminary experiments were
conducted using 2-fold cross-validation, with k = 1, 3, 5, 7, 9, 11, 13 and 15 using an Euclidean
distance measure.  k = 1 produced the best results.  A subsequent experiment consisting of 50 runs
using 2-fold cross-validation resulted in an average recognition accuracy of 71% and a best single
performance of 81%.

The second experiment was with the Quickprop implementation (Fahlman, 1998) of a feed-
forward neural network (Zurada, 1992).  An artificial neural network (ANN) is a nonsymbolic
learning model inspired by the neuronal architecture of the human brain.  The class of multilayer
feed-forward networks is capable of learning nonlinear statistical regularities from preclassified
examples.  These models are considered nonsymbolic since learned concepts are represented as
real-valued weights distributed throughout the network’s connections.

The neural network architecture chosen was a 1 hidden layer network with 5 input, 4 hidden,
and 2 output units.  Training and testing data were uniformly mapped into a continuous real range
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FIGURE 5. Learning curves for the four classification methods.

of [0, 1].  Output patterns were encoded as a linear representation of each of the two possible
classes of objects.  Again, preliminary experiments were conducted to determine the network’s
architecture and learning parameters.  Subsequently, 50 learning and recognition runs were
conducted using 2-fold cross-validation.  The average recognition accuracy was 75%, while the
best single performance was 96%.

In the third experiment, C4.5 (Quinlan, 1993) was used to induce decision trees.  A decision
tree is an n-ary tree having attributes as interior nodes and attribute values as branches.  Leaf nodes
in the tree are decision classes.  Recognition involves starting at the root node and testing the
attribute of an observation.  The value of the observation’s attribute dictates which branch of the
decision tree is traversed.  This proceeds recursively until a leaf node is reached.  The class label of
that leaf node is returned as the classification of the observation.  Decision trees are induced by
recursively selecting an attribute that best partitions training data by class using a disjointness
criteria, such the entropy measure.  Preliminary experiments were used to set C4.5’s windowing
and pruning parameters.  50 learning and recognition runs were conducted using 2-fold cross-
validation.  Average recognition accuracy for C4.5 was 81%, while its best single performance
was 96%.

The final experiment involved AQ15c, described earlier.  After preliminary experiments helped
determine learning parameters, 50 runs were conducted using 2-fold cross-validation.  The average
recognition accuracy was 96%, while the best single performance was 100%.  Figure 4 shows an
induced hypothesis for the cap class that achieved 100% classification accuracy on testing data.
Table 5 summarizes the performance of the four learning methods.  Average recognition accuracy
is shown with a 95% confidence interval.

5. DISCUSSION

In our experiments, AQ15c, a symbolic rule learning method, achieved significantly better average
predictive accuracy on testing data than k-nn, C4.5, and a neural network (96% vs. 81%, 75%,
and 71%).  It learned somewhat more slowly than k-nn (0.1 s vs. 0.05 s), but orders of magnitude
faster than the neural network (0.1 s vs. 37.5 s).  Learning times were comparable for AQ15c and
C4.5.  The recognition times of unseen examples were comparable for AQ15c, C4.5, and k-nn,
but were significantly slower than the neural net (20 ms vs. 4 ms).  One may observe, however,
that AQ15c decision rules can be used as the basis for a neural network architecture in which the
recognition rates are as fast or faster (Bala et al., 1994; Michalski et al., 1996).
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A reason why AQ15c out-performed the other methods is that the VL1 representation language
was able to better represent the distribution of the training examples in the representation space.
Refering to the first rule in Figure 4, we get an idea of the disjointness of the representation space
by looking at the selectors for the Area and Minor attributes.  The Area selector consists of odd
values, while the Minor selector consists primarily of even values, creating a checkerboard-like
pattern covering the representation space.  The disjointness of the space expressed by the decision
rules indicates the need for constructive induction (Michalski, 1980) to map the current
representation space into one that is better suited for learning.

Because rules carve out decision regions in the representation space and leave portions of the
space uncovered, AQ tends to generalize the training examples properly for this problem.  During
recognition, if an unknown example is from a part of the representation space uncovered by a rule,
flexible matching routines (described in Section 2.2) compute the most likely class.

Decision tree learning, on the other hand, completely partitions the representation space.  For
this particular problem and problems like it in which concepts are checkerboard patterns, like the
MONK2 problem (Thrun et al., 1991), decision tree learning tends to overspecialize its concept
descriptions.  While both C4.5 and AQ15c learn disjunctive normal form (DNF) concepts, because
VL1 expressions can potentially overlap, a richer set of DNF concepts can be represented than with
a decision tree representation which cannot produce overlapping covers.

k-nn’s poor performance on this problem is also likely due to the distribution of examples in
the space.  Blasting cap and non-blasting cap examples were sparsely distributed and intermixed
throughout the representation space.  There were no groupings of training examples into classes.
Consequently, from any unknown point in the representation space, the distance metric could have
found an example from either of the classes as its closest neighbor.  This disjointness of the space
also would have nullified any affect larger values of k would have had.  Experimental results bear
this out, since k = 1 produced the best classification accuracy.

Finally, the neural network may have also been affected by the distribution of the examples in
the space.  It is more difficult to precisely understand what the neural network learns since its
concepts are nonsymbolic.  Ultimately, the precise nature of the decision regions learned by a
neural network is unknown (Michie, Spiegelhalter, & Taylor, 1994).  A second possible
explanation for the neural network’s poor performance is that we may not have found the optimal
set of network parameters, although considerable time was spent configuring and optimizing the
network for these experiments.  Unlike the other learning methods, the parameter space for neural
networks is quite large and how to effectively search this space for the optimal set of parameters is
itself a challenging research issue.  Indeed, for sufficiently complex problems, this space can only
be searched heuristically.  Finally, because training a neural network is accomplished by a gradient
descent algorithm, there is no termination point for training.  This also is in contrast to the other
methods investigated.  The person training the network must make the decision when to stop
training.  If learning is stopped too soon, the intended concepts may not have been learned
sufficiently.  If learning is stopped too late, the network will overlearn the concepts.

As to why the representation space appears to be so disjoint could related to the ROI
determination procedure.  Human bias in this step can greatly affect learning results.  For this
problem, if the expert selects a representative set of blasting caps and then selects negative
examples that are either much smaller or larger than most blasting caps, then the representation
space would likely consist of two or three clusters of training examples isolated from each other.
On the other hand, if the expert selects negative examples that are similar in shape to blasting caps,
then the representation space would likely be more disjoint, especially after discretizing the space.
By virtue of various discretization algorithms, especially those that correlate class label to attribute
values when forming intervals, like ChiMerge (Kerber, 1992), two close points with different
class labels in an n-dimensional continuous representation space will be close to each other in a
discrete version of the space.  So if an expert selects negative examples in this manner, it would
result in a more disjoint, and more difficult, representation space for learning than if the examples
were selected in the former manner.

As mentioned earlier, one of the most important trademarks of the AQ15c learning system is
high comprehensibility of knowledge (decision rules) it generates.  VL1 decision rules are easy to
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understand and interpret by a human expert.  They can be easily translated into English.  Neural
networks lack this feature, because its knowledge resides in real-valued weights distributed
throughout the network’s connections, and thus carry little meaning for an expert.  High
understandability of the VL1 rules makes it possible for human experts to modify and improve
them.  For example, human experts drawing on their domain knowledge might modify the ranges
of rule conditions determined by the ChiMerge discretization step or remove some spurious
condition.  Since experts can understand the rules, they can also estimate the consequences of
changes made to the rules.  It is precisely this kind of understanding and a possibility of human
control that is needed for some applications, especially those in which a system is supposed to
assist humans in making decisions affecting other humans.

6. CONCLUSIONS

The work presented in this paper is an extension of our previous research on learning shape
descriptions (Michalski, 1972, 1973; Bala et al., 1994; Maloof & Michalski, 1994, 1995).  Further
extensions to this work are reported in (Maloof et al., 1996).  Among the main advantages of the
method are relatively high learning speed, high prediction accuracy and high understandability of
the decision rules.

Machine learning can be applied potentially at differing levels of object representation (i.e., the
pixel level, the feature level, and so on), and can be used in conjunction with a variety of vision
processes, such as model formulation, pose estimation, and segmentation. This paper has
demonstrated one such application, specifically, of acquiring symbolic descriptions of shape for
object recognition.

The primary weakness of the current implementation is the need for human involvement in ROI
determination and the strictly bottom-up recognition strategy.  Consequently, this is one of the
tasks of future research and has been explored in (Maloof et al., 1996).  We plan to investigate
how incremental learning and user feedback can be used during ROI determination to produce a
system that interacts with the expert and improves over time.  Another weakness (shared also by
many other learning programs) is the assumption that the given representation space (as defined by
the chosen attributes and their domains) is sufficiently relevant for the problem at hand.  This
assumption can be weakened by the application of a constructive induction program, such as AQ17
(Bloedorn et al., 1993), which is able to automatically improve the representation space.  In future
work, we intend to investigate the applicability of constructive induction to this and related
problems.  We also plan to apply the method to other computer vision problems, such as gesture
recognition, medical image analysis, and satellite image interpretation.
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